How do you ensure robots can navigate efficiently in complex and dynamic environments without excessive costs and requiring endless fine-tuning? In this whitepaper, Nobleans Bram Odrosslij, Birgit Plantinga, and Mukunda Bharatheesha present a novel approach to robot navigation: ๐๐ฒ๐น๐ณ-๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐บ๐ผ๐๐ถ๐ผ๐ป ๐ฐ๐ผ๐ป๐๐ฟ๐ผ๐น๐น๐ฒ๐ฟ๐ ๐ณ๐ผ๐ฟ ๐ฟ๐ผ๐ฏ๐ผ๐๐ ๐ฏ๐ฎ๐๐ฒ๐ฑ ๐ผ๐ป ๐ฟ๐ฒ๐ถ๐ป๐ณ๐ผ๐ฟ๐ฐ๐ฒ๐บ๐ฒ๐ป๐ ๐น๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด.
๐ฉ๐ฎ๐น๐๐ฎ๐ฏ๐น๐ฒ ๐ถ๐ป๐๐ถ๐ด๐ต๐๐
This article, written specifically for professionals in robotics, AI and automation, offers valuable insights into a navigation method that combines affordability and scalability. Our self-learning robot Cindyโข serves as an excellent example of this approach. With impressive success ratesโ100% in wall maps and 91.7% in complex BARN mapsโCindy shows that advanced navigation solutions are within reach.
๐ช๐ต๐ฎ๐ ๐ฐ๐ฎ๐ป ๐๐ผ๐ ๐ฒ๐
๐ฝ๐ฒ๐ฐt?
โข Discover how current navigation methods are reaching their limits and how reinforcement learning is changing the game.
โข Learn about the practical implementation of Nobleo Technologyโs robot Cindyโข and the challenges that were overcome.
โข Get inspired by concrete performance data and future visions that show how this technology can optimize entire robot fleets.
The self-learning robot – The future of intelligent navigation at scale
๐ฐ๐๐๐๐๐๐๐๐๐ ๐๐๐๐๐๐๐๐
๐๐ฐ ๐ด๐ต๐ข๐บ ๐ข๐ฉ๐ฆ๐ข๐ฅ ๐ฐ๐ง ๐ต๐ฐ๐ฎ๐ฐ๐ณ๐ณ๐ฐ๐ธ, ๐ธ๐ฆ ๐จ๐ช๐ท๐ฆ ๐ฐ๐ถ๐ณ ๐๐ฐ๐ฃ๐ญ๐ฆ๐ข๐ฏ๐ด ๐ต๐ฉ๐ฆ ๐ด๐ฑ๐ข๐ค๐ฆ ๐ข๐ฏ๐ฅ ๐ฐ๐ฑ๐ฑ๐ฐ๐ณ๐ต๐ถ๐ฏ๐ช๐ต๐บ ๐ต๐ฐ ๐ฆ๐น๐ฑ๐ญ๐ฐ๐ณ๐ฆ ๐ข๐ฏ๐ฅ ๐ง๐ถ๐ณ๐ต๐ฉ๐ฆ๐ณ ๐ฅ๐ฆ๐ท๐ฆ๐ญ๐ฐ๐ฑ ๐ฏ๐ฆ๐ธ ๐ข๐ฏ๐ฅ ๐ฆ๐น๐ค๐ช๐ต๐ช๐ฏ๐จ ๐ต๐ฆ๐ค๐ฉ๐ฏ๐ช๐ฒ๐ถ๐ฆ๐ด, ๐ญ๐ช๐ฌ๐ฆ ๐ด๐ฆ๐ญ๐ง-๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ ๐ณ๐ฐ๐ฃ๐ฐ๐ต๐ด. ๐๐ฏ๐ท๐ฆ๐ด๐ต๐ช๐ฏ๐จ ๐ช๐ฏ ๐ฐ๐ถ๐ณ ๐๐ฐ๐ฃ๐ญ๐ฆ๐ข๐ฏ๐ด ๐ค๐ฐ๐ฏ๐ต๐ช๐ฏ๐ถ๐ฐ๐ถ๐ด๐ญ๐บ ๐ค๐ฐ๐ฏ๐ต๐ณ๐ช๐ฃ๐ถ๐ต๐ฆ๐ด ๐ต๐ฐ ๐ต๐ฉ๐ฆ ๐ฅ๐ฆ๐ท๐ฆ๐ญ๐ฐ๐ฑ๐ฎ๐ฆ๐ฏ๐ต ๐ฐ๐ง ๐จ๐ณ๐ฐ๐ถ๐ฏ๐ฅ๐ฃ๐ณ๐ฆ๐ข๐ฌ๐ช๐ฏ๐จ ๐ต๐ฆ๐ค๐ฉ๐ฏ๐ฐ๐ญ๐ฐ๐จ๐ช๐ฆ๐ด. ๐๐ฉ๐ช๐ด ๐ณ๐ฆ๐ด๐ฆ๐ข๐ณ๐ค๐ฉ ๐ข๐ฏ๐ฅ ๐ข๐ณ๐ต๐ช๐ค๐ญ๐ฆ ๐ข๐ณ๐ฆ ๐ข๐ฏ ๐ฆ๐น๐ข๐ฎ๐ฑ๐ญ๐ฆ, ๐ข๐ฏ๐ฅ ๐ธ๐ฆโ๐ณ๐ฆ ๐ฆ๐น๐ค๐ช๐ต๐ฆ๐ฅ ๐ต๐ฐ ๐ด๐ฉ๐ข๐ณ๐ฆ ๐ช๐ต ๐ธ๐ช๐ต๐ฉ ๐บ๐ฐ๐ถ.
#intelligentnavigation #letsoutsmarttomorrow #nobleotechnology #brainport