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Introduction 

In today's world, robots are becoming increasingly common in various industries, 

from airports to hospitals. Getting these robots to navigate efficiently through 

complex dynamic environments remains a challenge with scalability being limited 

due to high hardware cost. 

Common approaches 
Deterministic optimization approaches, commonly used in robot navigation, 

require engineers to fine-tune algorithms to handle a wide range of scenarios a 

robot may encounter. This process is both time-consuming and challenging due 

to the complexity of the problem. Robots employing such approaches often need 

expensive hardware to be able to run complex software. An investment that 

keeps adding when a robot fleet is expanded. 

Learning-based approaches 
In recent years, learning-based approaches to navigation have been actively 

researched and developed. Particularly, an AI discipline called reinforcement 

learning is used to enable a robot to perform a certain type of task by learning 

from experience. We developed a novel approach to navigation by applying the 

reinforcement learning principle, which we call the self-learning robot. We believe 

that it has the potential to outperform classical methods as it encapsulates 

manual tuning complexity with comprehendible reward functions. 

While initial training may require significant computational resources, the 

resulting software can run on affordable hardware, specialized for AI applications 

like Google Coral’s edge TPU devices [1] or Nvidia’s embedded GPU platforms [2]. 

This makes it particularly valuable for businesses deploying multiple robots, as 

the learned behaviour can be easily replicated across an entire fleet. 

Although some AI disciplines like computer vision are already widespread, 

reinforcement learning for robot control is only now making its first steps from 

research to industry, with pioneering applications in legged robotics by companies 

like Boston Dynamics [3]. 

In this article 
We start off with the navigation fundamentals, followed by a comparison between 

commonly used deterministic optimization approaches and a learning-based 

approach to navigation. We then explain our novel approach with more details on 

the implementation in the subsequent section. After that, we demonstrate how 

our robot can swiftly navigate around walls and through cluttered environments. 

The article concludes with a discussion on future potential and applications of 

self-learning robots.  
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Navigation fundamentals 

Global planning 
Imagine standing in an office space, wanting to navigate to the coffee machine. 

Your brain automatically creates a general plan: "turn left at the conference room, 

walk past the desks, the coffee machine is at the end of the corridor." This mental 

mapping is what is known as a global path. 

 

Figure 1: Mobile robot with lidar (orange) driving along global path (purple) toward the coffee 
machine in an office environment. 

Local planning  
While walking, you instinctively adjust to the dynamic office environment - 

stepping aside for colleagues or pausing as someone exits a meeting room. 

Generating these quick, reactive movements is called local planning. 

 

Figure 2: Mobile robot with lidar (orange) in a scenario necessitating local planning to prevent 
future collision (red) along global path (purple). 

This article focusses on local planning in complex, dynamic environments.  
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Comparing local planning methods 

Common approaches 
Common approaches use deterministic 

optimization techniques to search for 
the best action at each point in time, 
based on a hand-tuned objective 

function. 

Learning-based approach 
Each timestep, the robot executes the 

action it has learned to be optimal for 
the current observation without 
evaluating numerous possible solutions. 

 
Figure 3: Selecting best action (green) based 
on forward simulated actions (purple). 

 
Figure 4: Direct action output based on learned 
behaviour. 

Due to the complexity of the environment, the impact of the tuning decisions of 

the common methods becomes difficult to comprehend, resulting in a tedious 

trial-and-error process. These methods rarely include sufficient testing, making 

it challenging to understand the full implications of parameter adjustments. This 

ultimately leads to limited performance in real-world scenarios. 

In contrast, the learning-based approach centres around testing, allowing desired 

behaviours to emerge naturally from real-world scenarios through comprehensive 

validation. 

Moreover, common approaches often use real-time optimization to find the best 

action at each timestep, which can make them computationally expensive. The 

self-learning approach, when paired with modern AI hardware, can execute very 

efficiently, as it directly outputs learned optimal actions without the need for 

runtime optimizations. 
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Self-learning robot: General concept 

In this section the general concept of the self-learning robot is explained. In the 

next section we explain our actual implementation of these concepts. 

For a robot to learn how to drive to a goal on its own, the following needs to be 

defined: 

• A robot 

• The environments 

• A reinforcement learning setup 

Robot 
A robot is defined by many aspects, but for the navigation tasks we focus on its 

physical dimensions, its constrained movement in space and its sensing abilities. 

Environment 
The environment usually consists of a map with a floor, walls and obstacles. It 

can be made as complex as you like. For instance, you could add moving 

obstacles, different textures and so on. 

Reinforcement learning 
The robot learns from experience using the reinforcement learning process. In 

short, it performs the following steps which are also visualized in Figure 5: 

1. The robot receives data from its sensors which are used to generate 

observations. 

2. These observations are fed into a neural network, which is defined by an 

architecture and its parameters. For each set of observations that the 

network receives, it returns an action. 

3. The robot performs the action and receives a reward. The rewards are 

positive for good behaviour (such as driving toward the goal) and negative 

for bad behaviour (such as driving into a wall). Defining the reward 

correctly is a crucial factor in learning the desired behaviour. 

These steps are repeated iteratively and after a specified number of steps, the 

reinforcement learning algorithm uses the observations, actions and rewards to 

update the parameters of the network in such a way that the network improves. 

This is repeated until the network no longer improves. 
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Figure 5: Diagram of the reinforcement learning training procedure (grey and black arrows) and 

inference process (black arrows only). 
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Self-learning robot: Practical implementation 

In this section we explain how the general concepts from the previous section are 

implemented to get our robot Cindy to learn how to drive to a goal on its own. 

Robot: Cindy 
Cindy is a small differential drive robot with a lidar developed by Nobleo 

Technology mainly for educational, continuous testing and development 

purposes. 

 

Figure 6: Nobleo's differential drive mobile robot named Cindy. 

As a first step we are simulating it as an infinitely small differential drive robot 

with a 2D lidar sensor that returns 64 range measurements over 360 degrees. 

Environment 
In our demonstration we use two different sets of maps consisting of solid 

obstacles depicted in Figure 7: 

• Wall maps: these consist of solid walls of varying lengths that the robot 

needs to drive around to reach its goal. 

• BARN maps [4]: these consist of highly cluttered obstacle configurations. 
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Figure 7: Examples of a wall map (left) and a BARN map (right). 

Reinforcement learning 
We train the robot to navigate through each of these map sets separately. This is 

done in simulation, which allows us to quickly train in many different scenarios.  

The implementation of reinforcement learning setup discussed in the previous 

section is depicted in Figure 5 and can be summarized as follows: 

• The observations consist of the lidar measurements, and the goal position 

with respect to the robot. 

• The action is a command velocity that consists of a forward velocity and 

an angular velocity component that provide simple instructions on how fast 

to go forward and how fast to turn. 

• The reinforcement learning algorithm used is Stable-Baselines3's 

implementation of the Proximal Policy Optimization (PPO) [5]. 

• The reward is designed such that it encourages the robot to drive to the 

goal with an efficient route (good behaviour), without colliding with 

obstacles (bad behaviour): 

o Small reward/penalty proportional to its progress towards or away 

from the goal. 

o Large reward for reaching the goal. 

o Even larger penalty for colliding with walls or obstacles. 

For more technical details on the implementation please see Appendix A. 
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Self-learning robot: Performance showcase 

To showcase the performance of our self-learning robot, we split the datasets into 

train and validation sets as seen in Table 1. The validation maps are excluded 

from the training process. 

Table 1: Training and validation set. 

 Nr. of training maps Nr. of validation maps 

Wall maps 179 37 

BARN maps 240 60 

 

It takes about 3 to 4 hours for a training session before the network stops 

improving when training is performed on a laptop with a 13th generation Intel i7 

processor, an RTX A1000 GPU and 32gb of RAM. 

In Figure 8 and Figure 9 below, you see examples of paths driven by the robot in 

the maps belonging to the respective datasets. 

 

Figure 8: Validation results in maps belonging to the wall dataset. 
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Figure 9: Validation results in maps belonging to the BARN dataset. 

The results in Figure 8 and Figure 9 show that in both cases the robot takes a 

fast and logical route to its goal and carefully drives around obstacles.  

Although it may seem as if the robot is cutting corners and driving through 

obstacles, this is not the case. A closer inspection of the maps reveals that the 

robot is not actually navigating through obstacles. Due to its small size, the robot 

can pass by objects at a very close distance. 

 

Figure 10: Zooming in on the upper left maps of the examples in Figure 8 and Figure 9 shows 
that the robots passes the obstacles at a close distance without colliding. 
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In Table 2 the success rates and average inference times are shown. The robot 

successfully reaches its goal in all the wall maps and successfully does so in 91.7 

% (55 maps) of the BARN maps. 

Table 2: Performance of our self-learning robot. The success rate is the percentage of maps in 

which the robot reaches the goal. The inference time is the time that it takes for the model to 
predict the next action based on its observation, on a regular laptop CPU. 

 Nr validation 

maps 

Success 

rate 

Average inference 

time 

Wall maps 37 100 % 0.2 ms 

BARN maps 60 91.7 % 0.2 ms 

 

In the BARN map examples shown in Figure 9, the robot collides once. This can 

have several causes, such as the reward putting too much emphasis on driving 

to the goal, the training data not being representative enough, the robot being 

entrapped and so on.   
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Closing words 

Reinforcement learning for robotics is steadily gaining traction in the industry, 

thanks to its ability to simplify complex environmental modelling into 

understandable reward functions. One of the key advantages of reinforcement 

learning-based methods is the ability to explicitly define desired behaviour, unlike 

classical methods where the expected behaviour is typically implicit. 

In our example, the robot navigates efficiently even though we never specified 

how it should interpret its lidar data or determine its velocity in different 

situations. It learned all of this on its own. 

As mentioned earlier, reinforcement learning-based methods can run on relatively 

affordable AI hardware, such as Nvidia Jetson boards  [2] and external TPU’s [1]. 

This reduces the cost per robot and makes large-scale deployment more feasible. 

Future work and opportunities 
Looking ahead, our next steps involve scaling up the simulated robot size and 

accurately modelling lidar noise and time delays for a smoother transition to the 

physical world. After that, we will deploy the network on a physical robot and 

fine-tune the training parameters. 

Given the progress AI has made in other areas, such as generative AI (e.g., 

ChatGPT) and image recognition, we believe that self-learning robots will also 

become more prominent in the future. They will be especially beneficial for two 

specific use cases: environments with large robot fleets and robots operating in 

complex, dynamic environments. 

Curious? 
We think that reinforcement learning for robot navigation is an innovative and 

promising technique that should be closely monitored in the coming years. If 

you're interested in its potential applications or would like to learn more about 

our implementation, feel free to contact us at: 

bram.odrosslij@nobleo.nl 
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APPENDIX A. TECHNICAL DETAILS 

This appendix describes the technical specifications of the implementation of the self-learning robot.  

Reinforcement learning algorithm 

Policy gradient method PPO 
PPO parameters 
 learning_rate 0.0003 
 n_steps 2048 
 batch_size 64 
 n_epochs 10 
 gamma 0.99 
 gae_lambda 0.95 
 clip_range_vf null 
 normalize_advantage true 
 ent_coef 0.0 
 vf_coef 0.5 
 max_grad_norm 0.5 
 use_sde false 
 sde_sample_freq -1 
 nr of environments 6 
 policy MlpPolicy 
 activation_fn ReLU 
 net_arch 
 pi [256, 256, 256, 256, 256] 
 vf [256, 256, 256, 256, 256] 
 

 

Software packages 

Reinforcement learning Stable baseline3 [6] 
Configuration management Hydra [7] 
Simulation Webots [8] 
Geometry library Shapely [9] 

 

Learning parameters 

total_time_steps 4.000.000 
n_eval_episodes 25 
eval_freq 10.000 / 6 
deterministic False 
reset_num_timesteps False 
nr of environments 6 
 

 

Robot simulation 

sample time 0.05 s 
kinematics 
 max forward velocity 0.2 
 min forward velocity -0.2 
 max forward acceleration 0.3 
 min forward acceleration -0.3 
 max angular velocity 0.6 
 min angular velocity -0.6 
 max angular acceleration 0.8 
 min angular acceleration -0.8 
dimensions 
 footprint [[-0.001, 0.0] 

  [0.0, √3/100] 
  [0.001, 0.0]] 
lidar 
 position [0.0, 0.0] 
 number of measurements 64 
 angular range 360 degrees 
 linear range 0.05-3.0 m 
 frequency range 20-40 Hz 

 

Rewards 

at goal 250 
collision -1500 
linear* 10.0 * relative progress 
  towards goal 

*The relative progress towards the goal is computed 
as the projection of the progress onto a vector 
pointing from the robot to the goal. It is therefore 
positive when its distance to the goal decreases and 
negative when its distance to the goal increases. 
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