THEME FEATURE - APPROXIMATING MODEL-PREDICTIVE CONTROLLERS USING NEURAL NETWORKS (NN-MPC)

VALIDATING
A MECHATRONIC SYSTEM

AUTHORS' NOTE

The authors are associated with
Flanders Make in Leuven (BE),
the Flemish strategic research
centre for the manufacturing
industry. Jeroen Willems is also
working at Nobleo Technology
in Eindhoven (NL) as a control
engineer/mechatronics
designer.

This work was carried out in the
framework of Flanders Make's
SBO projects DIRAC_SBO and
LearnOpTra_SBO, funded by
Flanders Make, and the Al
Research Program, funded by
the Flemish Government.

edward.kikken@
flandersmake.be
jeroen.willems@nobleo.nl
www.flandersmake.be
www.nobleo-technology.nl

broader usage in industry.

ON

Model predictive control (MPC) is a well-known technique to tackle challenging control
problems. It is based on solving a numerical optimisation problem at every time step to
find the best control action. A key drawback of MPC is its computational burden, which
hinders industrial application. In this article, we present our approach to approximate
MPC solutions using neural networks (NN-MPC), which yields high performance, yet

at a strongly reduced computational load and simplified deployment, thereby enabling

JEROEN WILLEMS, EDWARD KIKKEN, MAXIME MONSIEUR, ANDREA GIUSTI, BRANIMIR MRAK AND BRUNO DEPRAETERE

In industry, requirements on accuracy, productivity and/or
energy efficiency are continuously increasing. Furthermore,
systems are becoming more complex and are being used

in more variable conditions. All of these lead to a need for
more advanced control. A key method that can tackle these
challenging control problems is called Model-Predictive
Control (MPC).

MPC is an advanced control technique that, during
operation, at every time step, chooses the best control
action by solving a numerical optimisation problem [1]. It
does so by looking ahead over a given future horizon, while
employing predictions of upcoming events and accounting
for constraints. This enables the MPC to yield superior
performance compared to controllers widely-used in
industry, such as PID and LQR controllers.

Typical application areas of MPC are the process industry,
building energy systems (HVAC) and energy management
[2]. The industrial application of MPC to fast mechatronic
systems remains limited however. This is due to one of

the key drawbacks of MPC: the computational burden
associated with its optimisation. As a result, MPC update
rates are limited and/or suffer from deployment challenges
on industrial controllers, especially for (i) systems with
small time constants, (ii) systems with many states, and/or
(iii) systems with highly nonlinear dynamics.

In this work, we present our approach to approximate MPC
solutions using neural networks (NN-MPC [3]). We show
that the NN-MPC approach yields a high level of
performance, reaching nearly the level of the original MPC,
yet at a strongly reduced computational load and simplified
deployment, thereby enabling broader usage in industry.

32 nr62025 NEETENLGENEA

A model-predictive controller employs a model of the
system dynamics (which maps the inputs u to states x),
allowing to predict the future response of the system. Figure
1 illustrates the application of MPC to a given system. The
MPC is a function of the current state x, as well as of certain
task-specific parameters p, such as desired initial/final
conditions, constraints, predicted variables, etc.

The model-predictive controller has a feedback-like
structure. At every time sample, an optimisation problem is
solved that calculates the (predicted) optimal input over a
given future horizon, according to a model, cost function
and constraints. Once the optimal control inputs are
computed, only the inputs corresponding to the first sample
are applied to the system. After doing so, the new system’s
state x is observed, and the MPC is solved for the next

time step (starting from the new state). This enables the
controller to be robust against model-plant mismatches and
disturbances. Furthermore, through employing predictions,
MPC can anticipate to upcoming events like disturbances
or varying loads.

MPC
P (online

optimization)

The application of MPC to a given system.

Our proposed approach to approximate MPC solutions
using neural networks consists of three steps. The first two
steps (dataset generation and training of the network) are
computationally demanding, but can be performed before
deployment. During deployment (the third and final step),
only inference of the neural network is performed, which
has limited computational demands and can therefore be
executed in real-time.

1. Dataset generation

Offline, we solve a large set of MPC problems. The goal is to
capture the desired operating region of the system, in terms
of the states x, and the subset of task-specific parameters/
conditions/predictions p that are expected to vary during
operation.

For each of the MPC solutions, all MPC inputs (states x and
conditions p) are stored in dataset X. The corresponding
optimal control actions (corresponding to the first sample)
computed by the MPC are stored in dataset U. The richer
the datasets, the better the approximate controller will
perform in a variety of (un)seen conditions, but the higher
the computational effort required to build the dataset and
to train the neural network.

2. Training neural network

Still offline, we train a neural network that aims to
approximate the mapping from the input features (dataset
X) to the output features (dataset U), as depicted in Figure 2.

Dataset Dataset

Hidden

Input |
‘ layers
|
H

layer

I]0utput
l J layer

i
1

E\ ii

The neural network mapping input features (dataset X)
to output features (dataset U).

Typically, we consider a feedforward neural network, due to
its general-purpose nature. An example of such a network
is shown on the right in Figure 2. The network consists of
multiple layers. The first part of the network is the input
layer, which contains the input features. The second part
of the network contains the hidden layers. The complexity
of this part of the network can be modified according to
the considered use case, by adapting the number of hidden
layers as well as the number of neurons per layer. The final
layer is the output layer, which converts the information
from the hidden layers to the output features (i.e., the

control actions).

In the figure, each circle represents a neuron: it receives
information from the previous layer and passes it to the
next. Within each neuron, the incoming signals are
combined after being weighted, and a bias term is added.
The result of this calculation is then fed through an
activation function (e.g., ReLU or Tanh), which enables the
network to decide which neurons become active, and which
do not, enabling complex patterns to be captured.

After the architecture of the network is defined, it can be
trained by optimising these weights and biases. In this case,
we construct the networks using PyTorch and use an Adam
optimiser to optimise the weights and biases [4]. The cost
function used to train the black-box model is the mean
squared error between the output features in U and the
predictions of the network. After scaling the input and
output datasets, the training is run for a number of epochs
until the fitting error is sufficiently low.

3. Deployment

At run-time, the neural network is used to calculate the
NN-MPC control input & based on the current input
features (x and p), and is deployed as a direct replacement
to the original MPC controller, as shown in Figure 3.

The original MPC is replaced with the NN-MPC.

IDSPE|MIKRONIEK [ENY IR &

THEME FEATURE - APPROXIMATING MODEL-PREDICTIVE CONTROLLERS USING NEURAL NETWORKS (NN-MPC)

_ [Xtarget
Ytarget

T!e.f t Trfght

gtefc

i Bright
Wiefe
Wyight

The SCARA robot, including the considered closed-loop control scheme.

Application to SCARA robot

The approach is applied to a high-speed parallel SCARA
robot (see Figure 4). Such a SCARA robot is often used for
pick & place or assembly operations, where high velocities
and high accuracy are required.

The system is driven by two torque-controlled motors (two
inputsu=[T, T, gt 1), which control the location and speed
of the end-effector in the X-Y plane (four states x = [0, ., Gright’
wleﬂ’ wright
The system has a low time constant, pronounced nonlinear
dynamics, various constraints, and has multiple inputs and
multiple outputs (MIMO), making it challenging to control.

A (multi-body) model of the system is created using Robotran

[5], which can be used to generate the MPC solutions.

In the next sections, first a simulation study is conducted
and second, the results are validated experimentally.

045

031

0.27

0.23

n y-position [m]

0.19 -
—0.25 0 0.25

x-position [m]

The trajectories computed by the MPC used for training.

10 1]

[—e-MPC
—_ 3 — 5 —— NN-MPC
z Z
-~ 0 0 b
oy =
S & s
4
10 10
0.125 0.25 (] 0.125 0.25
Time [s] Time [s]
0.35 -
—— MPC
£ 031 — —— NN-MPC
= / N, » Initial condition
_% 027 { N © Final condition
Z L
=02
019

x-position [m]

Validation in simulation: task outside the training dataset.

34 nr62025 ETENIGONEA

], where 6 denotes the angle and w the angular velocity).

Simulation study

In this section, the proposed approach is validated in
simulation. The control goal of the MPC is to perform a
point-to-point motion, from a varying initial end-effector
state to a varying final end-effector state, while minimising
the required input torque. Furthermore, the end-effector
has to avoid a fixed circular obstacle. For this simulation
study, we consider a sampling time of 2.5 ms and a total task
length of 0.25 seconds (100 samples). However, as the task
is executed, each time, the length of the remaining MPC
horizon is decreased by 1, going from 100 initially down

to 1 as the task is completed.

First, we construct the input and output dataset, by varying
the initial and final end-effector positions. In total, we have
generated a dataset of 4,096 configurations. For this study,
the considered initial and final positions are equidistantly
sampled in the considered operating region. For MPC
control actions that are varying relatively smoothly over the
operating range, such a simple sampling approach suffices.
However, when more discrete changes in control actions
occur, more intelligent sampling is required. Future work
will investigate methods that aim to sample the operating
region more efficiently, thereby reducing the training data

requirements, while maintaining performance.

All trajectories, including the obstacle, are visualised in
Figure 5, where it can be seen that the training data covers
the region of interest densely. Neural networks are known
to interpolate correctly in their training domain, but
extrapolation on samples that stand farther away from this
domain is not guaranteed to perform well [6]. By sampling
the operating region densely for the training dataset and
by executing tasks within this operating region during
deployment (i.e., interpolation), we can expect the neural
network to approximate the MPC control actions well.

Second, we construct a neural network consisting of two
fully connected hidden layers with 150 neurons, and ReLU
activation functions. The inputs to the neural network are
the current state (x) and conditions (p), which consist of the
desired final positions of the end-effector, as well as the

(integer) number of samples remaining until the end of the
total task horizon. This last feature provides a notion of how
much time the (NN-)MPC has left to finish the task. The
outputs are the two predicted motor torques (i1). The neural
network is trained until the fitting error on the training
dataset is sufficiently low.

Third, the trained neural network is deployed as a
replacement of the original MPC. For validation, we
consider a case where the initial and final conditions

are placed relatively far away from the initial and final
conditions seen in the training dataset (but within the
region of interest, i.e., interpolation), aiming to investigate
how well the proposed algorithm generalises to unseen data.
The result is shown in Figure 6; the solutions are still very
similar. With respect to the cost function, the original MPC
has an RMS torque of 0.660 Nm, while the NN-MPC has
an RMS torque of 0.662 Nm.

Regarding evaluation time: evaluating the original MPC
takes 40 ms per iteration (on average), while the MPC
approximation only requires 0.5 ms per iteration (in this
case, limited by the non-real-time PC operating system
used). Hence, the proposed approach speeds up the
calculation time in simulation by almost a factor 100
(and allows the controller to be implemented well within
the considered sampling time of 2.5 ms).

In this section, the proposed approach is validated
experimentally. A similar workflow is followed as for the

7 i — .
@ 150) T \ [
4 \N \ I/ I\ .'rf ,"
- 100 Target L _/‘ _}, |
= 5 — NN-MPC f
s % --- MPC g
= —] sl] 1 | 1
"u 1 2 3 4 A i 1 2 3 4
Time [s] Time [s]
'3 . . ‘ 6r
z \ 2
= 0 H 4#%44*] M
$ -
= e
1] 1]
0 1 2 3 4 0 1 2 3 4
Time [‘1] Time [n]
0.4
035 \ E .
e sommmoss T
E 03
2 025 .
N . 'i'r.-n'nin;.; Eil'i‘\l |
0. * Target |
NN-MPC
=== MPC
0.15
0.25 o 0.25

x-position [m]

Experimental validation: various tasks inside the training dataset.

simulation study: we consider again a point-to-point task,
in this case with a time horizon of 0.3 s, and a sampling
frequency of 1 kHz.

However, in contrast to the simulation study; it is expected
that the dynamics of the model used to generate the MPC
solutions are no longer perfectly equal to the dynamics of
the system to which the (NN-)MPC is deployed. The higher
this model-plant mismatch, the more the solutions in the
training dataset will deviate from the true optimal
behaviour, and the more the (NN-)MPC has to correct

for the effects of this mismatch during deployment.

The training dataset consists of 625 trajectories from one
state to the next (187.5K samples in total). This training
data is generated using a (single) nominal model which is
fitted (a priori) to measurements of the true system, aiming
to reduce the initial model mismatch. In order to deal with
the effects of the remaining mismatch, the original dataset
is augmented with another dataset of 500 trajectories with
30 samples each (15K in total). This latter dataset consists
of several trajectories with a small displacement around
the final positions, ‘teaching’ the NN-MPC to correct for
the effects of remaining mismatch (similar to a feedback
controller).

As an alternative approach, we could have augmented

the training dataset with data generated using various
(perturbed) versions of the model and let the network find
the best match during operation, which will be studied

in future work.

106} ¢

¥ CEo_ 7\
2 Vs - Hime VARV
- =
& 50 Target | a: o .
|| — NN-MPC
olL .] |] 50t - " 7
4 5 6 7 4 3 o !
Time [s] Time [s]
ﬁ h 6 T]
E z
= o\ 1 = Y
2 =
= =
6 6 :
4 5 6 7 4 3 o !
Time [s] Time s
0.4
0.35
E o3
T
2 025
02 [+ Training Grid
* Target
NN-MPC
5
n[:.].']_25 0 0.25

x-position [m|

Experimental validation: various tasks outside the training dataset.

IDSPE|MIKRONIEK NS P13 1

THEME FEATURE - APPROXIMATING MODEL-PREDICTIVE CONTROLLERS USING NEURAL NETWORKS (NN-MPC)

Employing the above dataset, the neural network, as
described in the previous section, is trained. After training
the NN-MPC, it is applied to the experimental set-up as

a direct replacement of the original MPC. In Figure 7, the
results are shown for eight point-to-point tasks that are
direct members of the training dataset. On the left, the joint
angles 6

left

torques T, and T, . On the right, the resulting dis-

placements in Cartesian space are shown, as well as

and Grigm are shown, as well as the resulting

the grid on which the training data is sampled.

The following observations are made:

o For each of the considered tasks, the NN-MPC successfully
moves from the initial grid point to the target grid point.
At the designated final time of each task (i.e., after 0.3 s),
the mean absolute error in Cartesian space is 0.43 mm
(approximately 0.4% of the total Cartesian displacement).

o The joint angles and Cartesian displacements computed
by the NN-MPC match the original MPC results well.
Note however: the results shown for the original MPC
are those corresponding to the training dataset (i.e.,
simulation) only, since the original MPC cannot be
deployed directly on the experimental set-up due to its
high calculation time, preventing direct comparison.

o The motor torques of the NN-MPC match quite well with
those in the training data (MPC). However, towards the
end of the motion, the NN-MPC makes more aggressive
corrections to ensure the final point is reached and the
end-effector comes to standstill. This behaviour is also
expected to occur for the MPC performing such a motion
under the same model-plant mismatch: it is an effect
of the hard constraint on the MPC target position.
Improvements can be made by reducing the model-plant
mismatch and/or by adapting the original MPC: by
re-tuning the cost function, or by adding some slack
to the final constraint of the MPC to yield trajectories
with smoother torque profiles near the target.

Figur 8 shows the results for seven point-to-point tasks
outside the training dataset. The first few tasks ‘interpolate’
within the training grid, and the latter three tasks even go
outside the training grid. Again, the NN-MPC successfully
performs the motion from each grid point to the next, even
when ‘extrapolating’ beyond the seen grid points. At the
designated final time of each task (i.e., after 0.3 s), the mean
absolute error in Cartesian space is 0.40 mm (approximately
0.3% of the total Cartesian displacement), confirming the
NN-MPC generalises well to unseen conditions (for this
use case and application).

Regarding evaluation time: recall that evaluating the original

MPC takes 40 ms per iteration (on average). For the
NN-MPC (in this case deployed on a Beckhoff real-time

36 nr62025 NETENLGENTEA

target), the full loop time (reading encoders, inference
of neural-network, sending new torques, ...) is reduced
to ~8 ps, which is a speed up of a factor 5,000!

The proposed approach enables advanced controllers
(MPC) to be implemented on highly dynamic applications,
through approximation using neural networks. The
approach is applicable to various tasks and systems, for
which the operating region and conditions are defined/
can be captured within a training dataset. Experimental
validation has shown that improvements in calculation
speed of up to a factor of 5,000 are achievable, and that

the performance of the original MPC is approached.

Ongoing work focuses on a range of topics:

« Efficient generation of the datasets.

o Dealing with varying system dynamics and/or model-
plant mismatch through implicit system identification.

« Enhancing extrapolatability to unseen conditions.

o Further experimental validation.

[11 JAE. Andersson, et al., “CasADi — A software framework for
nonlinear optimization and optimal control’, Mathematical
Programming Computation, 2019.

[21 M.Schwenzer, et al, "Review on model predictive control: An
engineering perspective’, The International Journal of Advanced
Manufacturing Technology, vol. 117 (5), pp. 1327-1349, 2021.

[3] E.Kikken, et al,"Approximating MPC solutions using Neural
Networks; Towards Application in Mechatronic Systems’, Benelux
Meeting on Systems and Control, 2024.

[4] A.Paszke, “PyTorch: An imperative style, high-performance deep
learning library’, arXiv preprint, arXiv:1912.01703, 2019.

[5] N.Docquier, et al., "Robotran: a powerful symbolic generator of
multibody models’, Mechanical Sciences, vol. 4 (1), pp. 199-219, 2013.

[6] A.Courtois, et al,"Can neural networks extrapolate? Discussion
of a theorem by Pedro Domingos', Revista de la Real Academia de
Ciencias Exactas, Fisicas y Naturales. Serie A. Matemditicas, vol. 117 (2):
79,2023.

