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Introduction
In industry, requirements on accuracy, productivity and/or 
energy efficiency are continuously increasing. Furthermore, 
systems are becoming more complex and are being used 
in more variable conditions. All of these lead to a need for 
more advanced control.  A key method that can tackle these 
challenging control problems is called Model-Predictive 
Control (MPC). 

MPC is an advanced control technique that, during 
operation, at every time step, chooses the best control 
action by solving a numerical optimisation problem [1]. It 
does so by looking ahead over a given future horizon, while 
employing predictions of upcoming events and accounting 
for constraints. This enables the MPC to yield superior 
performance compared to controllers widely-used in 
industry, such as PID and LQR controllers.

Typical application areas of MPC are the process industry, 
building energy systems (HVAC) and energy management 
[2]. The industrial application of MPC to fast mechatronic 
systems remains limited however. This is due to one of 
the key drawbacks of MPC: the computational burden 
associated with its optimisation. As a result, MPC update 
rates are limited and/or suffer from deployment challenges 
on industrial controllers, especially for (i) systems with 
small time constants, (ii) systems with many states, and/or 
(iii) systems with highly nonlinear dynamics.

In this work, we present our approach to approximate MPC 
solutions using neural networks (NN-MPC [3]). We show 
that the NN-MPC approach yields a high level of 
performance, reaching nearly the level of the original MPC, 
yet at a strongly reduced computational load and simplified 
deployment, thereby enabling broader usage in industry.

Model predictive control (MPC) is a well-known technique to tackle challenging control 
problems. It is based on solving a numerical optimisation problem at every time step to 
find the best control action. A key drawback of MPC is its computational burden, which 
hinders industrial application. In this article, we present our approach to approximate 
MPC solutions using neural networks (NN-MPC), which yields high performance, yet 
at a strongly reduced computational load and simplified deployment, thereby enabling 
broader usage in industry.
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VALIDATING NN-MPC ON 
A MECHATRONIC SYSTEM

Model-predictive control
A model-predictive controller employs a model of the 
system dynamics (which maps the inputs u to states x), 
allowing to predict the future response of the system. Figure 
1 illustrates the application of MPC to a given system. The 
MPC is a function of the current state x, as well as of certain 
task-specific parameters p, such as desired initial/final 
conditions, constraints, predicted variables, etc. 

The model-predictive controller has a feedback-like 
structure. At every time sample, an optimisation problem is 
solved that calculates the (predicted) optimal input over a 
given future horizon, according to a model, cost function 
and constraints. Once the optimal control inputs are 
computed, only the inputs corresponding to the first sample 
are applied to the system. After doing so, the new system’s 
state x is observed, and the MPC is solved for the next 
time step (starting from the new state). This enables the 
controller to be robust against model-plant mismatches and 
disturbances. Furthermore, through employing predictions, 
MPC can anticipate to upcoming events like disturbances 
or varying loads. 
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The application of MPC to a given system.
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Approach: NN-MPC
Our proposed approach to approximate MPC solutions 
using neural networks consists of three steps. The first two 
steps (dataset generation and training of the network) are 
computationally demanding, but can be performed before 
deployment. During deployment (the third and final step), 
only inference of the neural network is performed, which 
has limited computational demands and can therefore be 
executed in real-time. 

1.  Dataset generation 
Offline, we solve a large set of MPC problems. The goal is to 
capture the desired operating region of the system, in terms 
of the states x, and the subset of task-specific parameters/
conditions/predictions p that are expected to vary during 
operation.

For each of the MPC solutions, all MPC inputs (states x and 
conditions p) are stored in dataset X. The corresponding 
optimal control actions (corresponding to the first sample) 
computed by the MPC are stored in dataset U. The richer 
the datasets, the better the approximate controller will 
perform in a variety of (un)seen conditions, but the higher 
the computational effort required to build the dataset and 
to train the neural network.

2.  Training neural network
Still offline, we train a neural network that aims to 
approximate the mapping from the input features (dataset 
X) to the output features (dataset U), as depicted in Figure 2. 
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The neural network mapping input features (dataset X) 
to output features (dataset U).

The original MPC is replaced with the NN-MPC.

Typically, we consider a feedforward neural network, due to 
its general-purpose nature. An example of such a network 
is shown on the right in Figure 2. The network consists of 
multiple layers. The first part of the network is the input 
layer, which contains the input features. The second part 
of the network contains the hidden layers. The complexity 
of this part of the network can be modified according to 
the considered use case, by adapting the number of hidden 
layers as well as the number of neurons per layer. The final 
layer is the output layer, which converts the information 
from the hidden layers to the output features (i.e., the 
control actions). 

In the figure, each circle represents a neuron: it receives 
information from the previous layer and passes it to the 
next. Within each neuron, the incoming signals are 
combined after being weighted, and a bias term is added. 
The result of this calculation is then fed through an 
activation function (e.g., ReLU or Tanh), which enables the 
network to decide which neurons become active, and which 
do not, enabling complex patterns to be captured. 

After the architecture of the network is defined, it can be 
trained by optimising these weights and biases. In this case, 
we construct the networks using PyTorch and use an Adam 
optimiser to optimise the weights and biases [4]. The cost 
function used to train the black-box model is the mean 
squared error between the output features in U and the 
predictions of the network. After scaling the input and 
output datasets, the training is run for a number of epochs 
until the fitting error is sufficiently low.

3.  Deployment
At run-time, the neural network is used to calculate the 
NN-MPC control input û based on the current input 
features (x and p), and is deployed as a direct replacement 
to the original MPC controller, as shown in Figure 3.
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Application to SCARA robot
The approach is applied to a high-speed parallel SCARA 
robot (see Figure 4). Such a SCARA robot is often used for 
pick & place or assembly operations, where high velocities 
and high accuracy are required. 

The system is driven by two torque-controlled motors (two 
inputs u = [Tleft, Tright ]), which control the location and speed 
of the end-effector in the X-Y plane (four states x = [θleft, θright, 
ωleft, ωright], where θ denotes the angle and ω the angular velocity). 
The system has a low time constant, pronounced nonlinear 
dynamics, various constraints, and has multiple inputs and 
multiple outputs (MIMO), making it challenging to control. 
A (multi-body) model of the system is created using Robotran 
[5], which can be used to generate the MPC solutions.

In the next sections, first a simulation study is conducted 
and second, the results are validated experimentally.
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The SCARA robot, including the considered closed-loop control scheme.

The trajectories computed by the MPC used for training.

Validation in simulation: task outside the training dataset.

Simulation study
In this section, the proposed approach is validated in 
simulation. The control goal of the MPC is to perform a 
point-to-point motion, from a varying initial end-effector 
state to a varying final end-effector state, while minimising 
the required input torque. Furthermore, the end-effector 
has to avoid a fixed circular obstacle. For this simulation 
study, we consider a sampling time of 2.5 ms and a total task 
length of 0.25 seconds (100 samples). However, as the task 
is executed, each time, the length of the remaining MPC 
horizon is decreased by 1, going from 100 initially down 
to 1 as the task is completed.

First, we construct the input and output dataset, by varying 
the initial and final end-effector positions. In total, we have 
generated a dataset of 4,096 configurations. For this study, 
the considered initial and final positions are equidistantly 
sampled in the considered operating region. For MPC 
control actions that are varying relatively smoothly over the 
operating range, such a simple sampling approach suffices. 
However, when more discrete changes in control actions 
occur, more intelligent sampling is required. Future work 
will investigate methods that aim to sample the operating 
region more efficiently, thereby reducing the training data 
requirements, while maintaining performance. 

All trajectories, including the obstacle, are visualised in 
Figure 5, where it can be seen that the training data covers 
the region of interest densely. Neural networks are known 
to interpolate correctly in their training domain, but 
extrapolation on samples that stand farther away from this 
domain is not guaranteed to perform well [6]. By sampling 
the operating region densely for the training dataset and 
by executing tasks within this operating region during 
deployment (i.e., interpolation), we can expect the neural 
network to approximate the MPC control actions well.

Second, we construct a neural network consisting of two 
fully connected hidden layers with 150 neurons, and ReLU 
activation functions. The inputs to the neural network are 
the current state (x) and conditions (p), which consist of the 
desired final positions of the end-effector, as well as the 

34  nr 6 2025  



(integer) number of samples remaining until the end of the 
total task horizon. This last feature provides a notion of how 
much time the (NN-)MPC has left to finish the task. The 
outputs are the two predicted motor torques (û). The neural 
network is trained until the fitting error on the training 
dataset is sufficiently low. 

Third, the trained neural network is deployed as a 
replacement of the original MPC. For validation, we 
consider a case where the initial and final conditions 
are placed relatively far away from the initial and final 
conditions seen in the training dataset (but within the 
region of interest, i.e., interpolation), aiming to investigate 
how well the proposed algorithm generalises to unseen data. 
The result is shown in Figure 6; the solutions are still very 
similar. With respect to the cost function, the original MPC 
has an RMS torque of 0.660 Nm, while the NN-MPC has 
an RMS torque of 0.662 Nm.

Regarding evaluation time: evaluating the original MPC 
takes 40 ms per iteration (on average), while the MPC 
approximation only requires 0.5 ms per iteration (in this 
case, limited by the non-real-time PC operating system 
used). Hence, the proposed approach speeds up the 
calculation time in simulation by almost a factor 100 
(and allows the controller to be implemented well within 
the considered sampling time of 2.5 ms). 

Experimental validation
In this section, the proposed approach is validated 
experimentally. A similar workflow is followed as for the 
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Experimental validation: various tasks inside the training dataset. Experimental validation: various tasks outside the training dataset.

simulation study: we consider again a point-to-point task, 
in this case with a time horizon of 0.3 s, and a sampling 
frequency of 1 kHz. 

However, in contrast to the simulation study, it is expected 
that the dynamics of the model used to generate the MPC 
solutions are no longer perfectly equal to the dynamics of 
the system to which the (NN-)MPC is deployed. The higher 
this model-plant mismatch, the more the solutions in the 
training dataset will deviate from the true optimal 
behaviour, and the more the (NN-)MPC has to correct 
for the effects of this mismatch during deployment. 

The training dataset consists of 625 trajectories from one 
state to the next (187.5K samples in total). This training 
data is generated using a (single) nominal model which is 
fitted (a priori) to measurements of the true system, aiming 
to reduce the initial model mismatch. In order to deal with 
the effects of the remaining mismatch, the original dataset 
is augmented with another dataset of 500 trajectories with 
30 samples each (15K in total). This latter dataset consists 
of several trajectories with a small displacement around 
the final positions, ‘teaching’ the NN-MPC to correct for 
the effects of remaining mismatch (similar to a feedback 
controller).  

As an alternative approach, we could have augmented 
the training dataset with data generated using various 
(perturbed) versions of the model and let the network find 
the best match during operation, which will be studied 
in future work. 

 

   nr 6 2025  35



THEME FEATURE – APPROXIMATING MODEL-PREDICTIVE CONTROLLERS USING NEURAL NETWORKS (NN-MPC)

Employing the above dataset, the neural network, as 
described in the previous section, is trained. After training 
the NN-MPC, it is applied to the experimental set-up as 
a direct replacement of the original MPC. In Figure 7, the 
results are shown for eight point-to-point tasks that are 
direct members of the training dataset. On the left, the joint 
angles θleft and θright are shown, as well as the resulting 
torques Tleft and Tright. On the right, the resulting dis
placements in Cartesian space are shown, as well as 
the grid on which the training data is sampled. 

The following observations are made: 
•	� For each of the considered tasks, the NN-MPC successfully 

moves from the initial grid point to the target grid point. 
At the designated final time of each task (i.e., after 0.3 s), 
the mean absolute error in Cartesian space is 0.43 mm 
(approximately 0.4% of the total Cartesian displacement).  

•	� The joint angles and Cartesian displacements computed 
by the NN-MPC match the original MPC results well. 
Note however: the results shown for the original MPC 
are those corresponding to the training dataset (i.e., 
simulation) only, since the original MPC cannot be 
deployed directly on the experimental set-up due to its 
high calculation time, preventing direct comparison.

•	� The motor torques of the NN-MPC match quite well with 
those in the training data (MPC). However, towards the 
end of the motion, the NN-MPC makes more aggressive 
corrections to ensure the final point is reached and the 
end-effector comes to standstill. This behaviour is also 
expected to occur for the MPC performing such a motion 
under the same model-plant mismatch: it is an effect 
of the hard constraint on the MPC target position. 
Improvements can be made by reducing the model-plant 
mismatch and/or by adapting the original MPC: by 
re-tuning the cost function, or by adding some slack 
to the final constraint of the MPC to yield trajectories 
with smoother torque profiles near the target.

Figur 8 shows the results for seven point-to-point tasks 
outside the training dataset. The first few tasks ‘interpolate’ 
within the training grid, and the latter three tasks even go 
outside the training grid. Again, the NN-MPC successfully 
performs the motion from each grid point to the next, even 
when ‘extrapolating’ beyond the seen grid points. At the 
designated final time of each task (i.e., after 0.3 s), the mean 
absolute error in Cartesian space is 0.40 mm (approximately 
0.3% of the total Cartesian displacement), confirming the 
NN-MPC generalises well to unseen conditions (for this 
use case and application).

Regarding evaluation time: recall that evaluating the original 
MPC takes 40 ms per iteration (on average). For the 
NN-MPC (in this case deployed on a Beckhoff real-time 

target), the full loop time (reading encoders, inference 
of neural-network, sending new torques, ...) is reduced 
to ~8 μs, which is a speed up of a factor 5,000!

Conclusion and ongoing work
The proposed approach enables advanced controllers 
(MPC) to be implemented on highly dynamic applications, 
through approximation using neural networks. The 
approach is applicable to various tasks and systems, for 
which the operating region and conditions are defined/ 
can be captured within a training dataset. Experimental 
validation has shown that improvements in calculation 
speed of up to a factor of 5,000 are achievable, and that 
the performance of the original MPC is approached. 

Ongoing work focuses on a range of topics: 
•	 Efficient generation of the datasets.
•	� Dealing with varying system dynamics and/or model-

plant mismatch through implicit system identification.
•	 Enhancing extrapolatability to unseen conditions.
•	 Further experimental validation. 
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