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Abstract—Skin cancer is a prevalent disease, which can be fatal
when not detected early. An automatic skin lesion classifier could
aid a dermatologist in diagnosing skin cancer. Deep convolutional
neural networks (DCNN) have shown strong performances at this
task, even though the input images were restricted to only three
(RGB) channels. Multispectral imaging captures information that
is beyond the human vision and enables the quantification of skin
chromophores. Therefore, it is reasonable to assume that this
imaging technique adds value to the existing DCNN classifiers.

Several DCNN architectures were developed to combine the
advantages of multispectral imaging and DCNN. The networks
were trained and validated on a multispectral dataset of 40
malignant and 146 benign lesions. To provide a more sophis-
ticated input to the DCNN, melanin and hemoglobin maps were
estimated based on the principles of light propagation through
skin. The DCNN that fuses low-level features of an RGB image
and a melanin-hemoglobin-residual image, achieved an AUC of
0.87±0.06, whereas the AUC of the benchmark RGB DCNN was
found to be 0.85±0.07.

Follow-up work should test the proposed DCNN architectures
on a larger multispectral dataset. A higher diagnostic accuracy
of an automatic skin lesion classifier might be accomplished with
multispectral imaging in the future, which would enable early
screening for skin cancer.

Index Terms—melanoma, deep convolutional neural network,
multispectral imaging, skin cancer, automatic skin lesion classi-
fication

I. INTRODUCTION

Skin cancer is one of the most common type of cancer
worldwide [1]. Unfortunately, the global incidence rate is still
increasing, since the world becomes more and more exposed to
UV radiation [1] [2] [3]. One in five people will experience this
severe disease at some point during their life [4]. Melanoma is
the most aggressive type of skin cancer, since the cancer cells
will grow deeply into the skin. Due to the deep invasion, these
malignant cells can easily spread to other parts of the body
through the lymphatic or vascular system at a later stage [3].
Therefore, early detection of melanoma is of high importance
for better treatment outcome and key to saving lives and
subsequent healthcare costs [5] [6].

Currently, suspicious skin lesions are assessed by a trained
dermatologist, who visually inspects the lesion with a dermato-
scope to give a preliminary diagnosis [7]. Dermatoscopy is a

non-invasive way to image the skin lesion with red-green-blue
(RGB) color channels and thus mimicking the perception of
the human eye. A dermatologist is trained to evaluate color
and geometrical features in the dermatoscopic images, e.g.
asymmetry, size and irregular borders of a skin lesion [8].
When the dermatologist suspects a skin lesion to be malignant,
a biopsy followed by histological examination is prescribed,
which is the gold standard to formulate a diagnosis with cer-
tainty [7]. Diagnosing all melanomas as malignant is priority,
since they can be fatal when not removed early. However,
it is also important to classify a skin lesion as benign when
there are no malignant characteristics, meaning its invasive
removal can be avoided [9]. Still, approximately five invasive
biopsies have to be performed to detect one malignant skin
lesion [10]. Although diagnostic accuracy has been improved
in recent years, discriminating benign and malignant lesions
remains challenging, since they often visually resemble each
other [1].

A variety of imaging modalities has been studied to support
the diagnosis of skin cancer, including multispectral imaging
[3] [11] [12]. Although dermatoscopy is still the most widely
used device, it requires a lot of user experience to give a
reliable diagnosis and these digital images are limited to only
three colors channels [3] [9] [12]. Multispectral imaging over-
comes these drawbacks and is reported to be more objective
and quantitative [3] [12]. By capturing images at multiple
wavelengths that are beyond the human vision spectra, this
technique is able to provide additional information about
the skin lesion, e.g. melanin and hemoglobin content [13]
[14]. Since assessing all these wavelength channels and/or
chromophore maps as information sources is hard for humans,
artificial intelligence was often applied in previous studies for
the analysis of multispectral images [9] [15] [16] [17].

In recent years, deep learning techniques were shown to
have significant potential to aid the dermatologist in diagnos-
ing skin cancer [3] [18]. Especially deep convolutional neural
networks (DCNN) achieved remarkable diagnostic results and
proved to be comparable with or even outperform dermatolo-
gists [19] [20] [21] [22]. However, to our knowledge a DCNN
has not yet been implemented to process multispectral skin



lesion images.
The aim of this study is to investigate whether multispectral

images would improve the performance of a DCNN skin lesion
classifier. A skin lesion dataset was acquired with a low-cost
multispectral device, which captured an RGB image as well
as a multispectral image. The first objective of this study
was to quantify and localize the hemoglobin and melanin
content in the skin lesion by using the measured reflection
spectra. As a second objective, the performance of a DCNN
classifier that combines the multispectral information (i.e.
chromophore maps) is compared to a benchmark DCNN,
which only uses RGB images as input. For this aim, several
DCNN architectures were explored and evaluated. The long-
term aim of this project is to provide a low-cost imaging device
that autonomously assesses a skin lesion with high diagnostic
accuracy, which would enable early screening of skin cancer.

II. MATERIALS AND METHODS

A. Multispectral measurement device

The skin lesions were imaged with a self-developed multi-
spectral camera. This measurement device contained an RGB
camera and a monochrome camera. The monochrome camera
was used to capture the skin reflection at specific wavelengths.
The skin was sequentially illuminated with LED’s that emit
light at the following wavelengths: 417, 468, 525, 548, 600,
660, 736, 760, 861 and 950 nm. These wavelengths were
chosen in order to capture the specific shape elements of the
reflection curves of skin chromophores [23]. The equipment
was integrated in a handheld device, ensuring that the skin was
only illuminated by the LED’s. In addition to the RGB and
multispectral images, an environment image was acquired with
no LED’s on, which was used for calibration of the measured
reflection. The images were acquired with a resolution of 75
pixels/mm and captured an area of 27.4x32.7 mm2. All images
contained a square reference sticker around the lesion, which
was build in the device. The region of interest (ROI) within
the reference sticker was extracted from the images, containing
1350x1350 pixels. The measured reflection of these ROI’s was
obtained by the following formula:

Rmeasured(λ) =
Imeasured(λ)− Ienvironment

Iwhite(λ)
(1)

where Imeasured was the measured intensity, Ienvironment

was the measured intensity with no LED’s on and Iwhite was
the measured intensity of a white object that gave a 100%
diffuse reflection.

B. Data

A total of 246 images were acquired of suspicious skin
lesions with the multispectral measurement device. After re-
moval of duplicate images, 218 images remained for eval-
uation by a dermatologist, who gave a preliminary diag-
nosis. The lesions that required a biopsy, were surgically
excised and subjected to histopathological evaluation within
a maximum of 14 days from the image acquisition. The
lesions were labeled with the biopsy result when available.

Otherwise, the preliminary diagnosis of the dermatologist was
given as label, which was the case for 112 benign lesions.
Subsequently, binary classification labels were given to the
lesions, consisting of the classes ’benign’ and ’malignant’.
Moreover, 32 lesions were excluded from the analysis due
to the following reasons: no diagnosis (29), movement during
image acquisition (1) or erroneous output of chromophore map
calculation (2). The remaining dataset contained 146 benign
lesions (127 melanocytic nevi, 2 skin atrophies, 7 seborrheic
keratoses, 1 blue nevus, 1 actinic keratosis, 3 angiomas, 1
sebaceous cyst, 3 keratoacanthomas and 1 hyperpigmentation)
and 40 malignant lesions (11 melanomas, 5 squamous cell
carcinomas, 24 basal cell carcinomas). All patients provided
written informed consent before participating in the study.

C. Diffuse reflectance skin model

The multispectral images were used for the quantification
and localization of relevant skin chromophores. The skin can
be structured into different layers through which light travels.
The composition and the thickness of these layers determine
how much the light is absorbed and scattered [24]. Several
mathematical skin models have been proposed in literature,
varying from a complex multi-layer description (7 to 9 layers)
[14] [25] [26] to a simplified two-layer approach [13] [27].
Since the spectral resolution of our measured reflection was
limited, the simplified skin model approach of Jolivot et al.
was chosen, which consisted of two layers: the epidermis and
the dermis [13]. The epidermis is the upper layer of the skin.
Its main absorber is melanin, which gives a brown color to
the skin when its concentration is high [28]. The dermis is
located beneath the epidermis and oxy- and deoxyhemoglobin
are assumed to be the major absorbers in the dermis [13] [29].
The skin model provided the reflectance as a function of the
melanin fraction in the epidermis (fmel), the blood fraction in
the dermis (fblood), the percentage of saturated blood (Coxy),
the thickness of the epidermis (Depidermis) and the thickness
of the dermis (Ddermis). A more detailed explanation of this
model can be found in Appendix A.

The skin model was implemented in Python. All input
parameters were fitted to the measured reflectance spectra
in a pixel wise manner using the function curve_fit from
the optimize module of SciPy. In the fitting process, the
parameters were restricted to the physiological ranges for
human skin found in literature [13], see Table I. However,
the upper bound of fmel and fblood was highered to 0.99 and
0.25 respectively, allowing the model to give an appropriate
fit for pixels in the skin lesions as well. By providing these
boundaries to curve_fit, this function solves the system of
equations with the Trust Region Reflective method, which is
reported to be quite robust for bounded problems [30]. In
addition to the obtained fmel-, fblood-, Coxy-, Depidermis-
and Ddermis-maps, an amount-of-melanin-map (Amel-map)
and a residual-map were created. The Amel-map was the
result of multiplying the fmel-map with the Depidermis-map.
Furthermore, the residual-map contained information about
the quality of the pixel-wise model fit. This map was created
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TABLE I: Overview of the skin model parameters and their
physiological ranges [13], which were used as boundaries
in the skin model fitting process.

Skin parameter Symbol Range

Melanin fraction fmel 0.013− 0.99

Blood fraction fblood 0.002− 0.25

Oxygenated hemoglobin Coxy 25− 90%

Thickness of epidermis Depidermis 0.01− 0.015 mm

Thickness of dermis Ddermis 0.6− 3 mm

by calculating the mean squared error of the fitted and the
measured reflection data points. It was regularly observed
that the difference between the modeled and the measured
reflectance was large at 950 nm. Hence, this wavelength was
excluded from the fitting process.

D. Deep convolutional neural networks

The multispectral images and chromophore maps were
processed by DCNN’s. The DCNN models were written in
Python, where the networks were trained and validated using
the fastai library [31]. The ROI images were downsampled
to a size of 224x224 pixels using a median filter, since all
developed DCNN architectures require this input size.

Network architectures: Several network architectures were
created to process the RGB images, multispectral images
and/or the chromophore maps, based on a pretrained ResNet50
[32]. It has previously been shown that transfer learning
improved the performance of a skin lesion classifier when
training on small datasets, since it significantly reduces the
chance of overfitting the model [33] [34]. Therefore, the
weights of the ResNet50 backbone were pretrained on the
large-scale ImageNet database [35].

An overview of the network architectures with the required
input is shown in Fig. 1. The fusion of the chromophore
image features with the RGB image features can be done at a
low level or at a high level in the DCNN, see ’Early fusion’
versus ’Late fusion’ in Fig. 1b and 1d. The performances of
both networks were explored. Furthermore, a DCNN using
the 10-channel multispectral images as input was evaluated
(Fig. 1c). The network architectures are discussed below in
more detail.

RGB ResNet: The original ResNet50 was used to provide
the reference performance with the RGB images as input (Fig.
1a), where the last Linear layer ensured a binary classification
into ’benign’ or ’malignant’.

Early fusion of RGB + skin model maps: All input images
(RGB + a combination of three skin model maps) were
stacked to a 6-channel input. Originally, the first layer in
ResNet50 is a 2D convolutional layer. In this layer, 64 kernels
with a size of 3x7x7 are applied to the 3-channel image with
a stride of 2, which gives an output size of 112x112x64

for this specific layer. To allow a 6-channel image input,
the size of the kernels in this 2D convolutional layer was
adjusted to 6x7x7, providing the same layer output size as in
the 3-channel network. The other network layers were kept
similar to the original ResNet50. This netwerk was shown in
Fig. 1b.

Early fusion of multispectral images: The original
ResNet50 was adapted in a similar way as described above.
All multispectral images were stacked to a 10-channel input.
The kernels in the first 2D convolutional layer were adjusted
to a size of 10x7x7 and the rest of the network remained the
same, see Fig. 1c.

Lated fusion of RGB + skin model maps: In addition to the
low-level feature fusion architectures discussed above, also
a high-level feature fusion network was build. This network
contained two parallel ResNet50 backbones. One backbone
processed the RGB images and the other one processed
a combination of three skin model maps. Both backbones
gave an output of 4096 features, which are concatenated
to a total of 8192 features. The two linear layers after the
concatenation combined these features and ensured that the
output of the network was again a prediction for two classes.
The architecture of this late fusion network was visualized in
Fig. 1d.

The early and the late fused networks both require six
maps as input. These six maps consisted of the red, green and
blue channel plus a combination of three skin model maps.
To reduce the amount of skin model map combinations, we
assumed that the fblood-map and the Amel-map contained the
most relevant information. Therefore, these were included in
all combinations, that were given as input to the DCNN’s.
An overview of all used image combinations is given in Fig. 2.

Cross validation: The dataset was divided into training and
validation by using 5-fold cross-validation. Usually, including
a separate test set is preferred, since the fine-tuning of the
network parameters could affect the performance of the vali-
dation set [36]. However, given that the number of malignant
skin lesions is limited in our dataset, a test set would not
be representative and is therefore not used. Furthermore, the
number of malignant skin lesions was equally divided over the
five folds to reduce the variety of the validation sets.

Training: During training, the parameters of the ResNet50
backbone were frozen. The trainable parameters in the head
of the DCNN of the model were optimized with the weighted
CrossEntropy loss function. In this loss function, more weight
was put on the loss of the malignant lesions (90%) than on
the loss of the benign lesions (10%), since the dataset was
imbalanced (i.e. more benign than malignant lesions) and the
detection of malignant lesions is considered to be more im-
portant than benign lesions. The number of epochs was set to
100. In every epoch, all training images were randomly flipped
and/or rotated by multiples of 90° to prevent overfitting. The
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Fig. 1: a) Original ResNet50, which requires a 3-channel image as input (RGB) and gives a prediction (P) for the classes
’bening’ and ’malignant’ as output, b) Early fused DCNN, where the first layer of the original ResNet50 was modified to allow
a 6-channel image as input, c) This multispectral DCNN architecture allows a 10-channel image as input, again by adjusting
the first layer of the original ResNet50, d) Late fused DCNN, where the input of two 3-channel images is processed separately
through the ResNet50 backbone and the obtained features are concatenated at a higher level.

Fig. 2: Overview of the image combinations that were given
as input to the early and the late fused DCNN’s: 5 maps were
fixed (R, G, B, fblood and Amelanin), and the other map was
varied: Depidermis, Ddermis, Coxy or residual.

network was trained with the function fit_one_cycle from the
fastai library. Using the one cycle policy was recommended,
since its performance is better in terms of computational speed
and accuracy [37].

Validation: Receiver operating characteristic (ROC) curves
were created to evaluate the performances of the different
networks. A ROC curve gives an overview of the true positive
rate (TPR) and the false positive rate (FPR) when choosing
different thresholds for converting the probability output of
the network to a binary output. The TPR was defined as the
number of correctly classified malignant lesions divided by
the total number of malignant lesions. The FPR was defined
as the number of benign lesions that were wrongly classified as
malignant divided by the total number of benign lesions. The
area under the ROC curve (AUC) was determined for all five
folds. Subsequently, these five AUC values were averaged and
the standard deviation (std) was determined. Last, an average
ROC curve was created by calculating the TPR and FPR over
all five folds.
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III. RESULTS

The diffuse reflectance skin model was successfully applied
to 186 multispectral images. However, two skin lesion images
gave erroneous results for the chromophore maps, hence
excluded from further analysis.

An example of the measured reflection versus the model fit
is shown in Fig. 3 for a skin pixel and for a lesion pixel. The
reflectance in the lesion is lower for all wavelengths compared
to the surrounding skin, which resulted in a high value for the
parameter fmel. This figure also demonstrates that the skin
model was able to fit the different reflection signatures shapes
of lesion versus skin.

A few examples of the fblood-maps and the Amel-maps
with the corresponding dermatoscopic images were displayed
in Fig. 4. The first two rows in this figure show malignant
lesions (top row: melanoma, middle row: basal cell carci-
noma), whereas the bottom row visualizes a benign lesion
(melanocytic nevus). It was observed that the superficial blood
vessel structures were extremely enhanced in the fblood-map
compared to the dermatoscopic image. Furthermore, the skin
lesion contains a higher amount of melanin compared to the
healthy skin.

The chromophore maps and multispectral images were
given as input to the DCNN’s as described in the Material and
Methods section. The performances of the DCNN classifiers
were summarized in Table II. Moreover, Fig. 5 shows the
average ROC curves for the RGB DCNN, the multispectral
DCNN and the best performing early and late fused DCNN’s.
The early fused DCNN, given an input of R-G-B-residual-
fblood-Amel maps, achieved the highest AUC value, which
was equal to 0.87±0.06. Furthermore, the AUC for the multi-
spectral DCNN was found to be 0.82±0.06. All AUC values
were comparable with the reference AUC value of 0.85±0.07,
i.e. the result of the benchmark RGB DCNN classifier. There
was no trend observed for the performances of the early fused
networks (average AUC = 0.81) versus the late fused networks
(average AUC = 0.82). Last, it is worth noting that the variety
of AUC values was high among the different folds (std: 0.06-
0.11).

TABLE II: Results of the DCNN classifiers

Input DCNN AUC
mean ± std

RGB RGB 0.85 ± 0.07

Multispectral Multispectral 0.82 ± 0.11

R-G-B-Depidermis-fblood-Amel Early fusion 0.80 ± 0.09

R-G-B-Depidermis-fblood-Amel Late fusion 0.86 ± 0.09

R-G-B-Ddermis-fblood-Amel Early fusion 0.79 ± 0.09

R-G-B-Ddermis-fblood-Amel Late fusion 0.82 ± 0.09

R-G-B-Coxy-fblood-Amel Early fusion 0.79 ± 0.09

R-G-B-Coxy-fblood-Amel Late fusion 0.81 ± 0.09

R-G-B-residual-fblood-Amel Early fusion 0.87 ± 0.06

R-G-B-residual-fblood-Amel Late fusion 0.79 ± 0.11

Fig. 3: Example of the measured reflectance and the result of
the model fit for a pixel in skin (fmel=0.28, fblood=1.2 ·10−2,
Coxy=0.90, Depidermis=1.1 · 10−2 mm, Ddermis=1.5 mm)
versus skin lesion (fmel=0.99, fblood=2.4 · 10−2, Coxy=0.25,
Depidermis=1.8 · 10−2 mm, Ddermis=3.0 mm).

Fig. 4: Examples of dermatoscopic images (1a, 2a, 3a) with the
corresponding fblood-maps (1b, 2b, 3b) and Amel-maps (1c,
2c, 3c) for 1) melanoma (malignant); 2) basal cell carcinoma
(malignant) and 3) melanocytic nevus (benign).

IV. DISCUSSION

This study introduced a method to combine multispectral
imaging and DCNN’s for diagnosing skin cancer. As a first ob-
jective, information about the skin composition was retrieved
from the pixel-wise reflectance signatures. For this, the skin
model of Jolivot et al. [13] was implemented, which estimates
the hemoglobin and melanin content based on the principles
of light propagation. In addition to these skin chromophore
maps, the skin model provided spatial information about the
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Fig. 5: ROC curves for the best performing early and late
fused DCNN’s, the multispectral DCNN and the benchmark
RGB DCNN.

thickness of the dermis and epidermis as well as the percentage
of the blood that was bounded to oxygen. The results show that
this skin model performs well at enhancing the blood (fblood)
and melanin (Amel) structures compared to other studies, even
though the spectral resolution of the measured reflection was
limited. For example, the study of Hosking et al. [9] also
derived blood and melanin maps from hyperspectral images to
create melanoma biomarkers. However, these two maps seem
to have a strong correlation, which was not the case in the
current study.

The skin model maps were only validated by visual in-
spection, and although the model seems to extract the de-
sired information from the multispectral images, it still has
some limitations. First, the skin model gave a poor fit for
wavelengths in the near-infrared region. In this region, the
absorption coefficient of water becomes more relevant, which
was not included in this model [38]. Therefore, adding a water
component to the used skin model of Jolivot et al. might
improve the model reflectance fit for wavelengths above 800
nm. Another limitation is that the skin model systematically
overestimates the fraction of melanin (fmel). For example,
literature reports a melanin percentage of 43% in darkly
pigmented Africans [14] [39], while our estimated fmel in the
normal skin surrounding the lesion was regularly higher than
43%. This overestimation was also seen in the melanin maps
showed in the article of Jolivot et al. [13]. Here, a melanin
percentage of approximately 7% was estimated for skin type II
(Fitzpatrick scale), although a value of 1-3% was expected for
this skin type [39]. As a consequence of this overestimation,
the fmel in a dark skin lesion clips to 0.99. Nevertheless, it

was observed that the epidermis map was thickened at the
location of the moles where fmel was clipped. Therefore, the
amount-of-melanin map was introduced, which gave a better
representation of the melanin content.

Furthermore, there was also a limitation of the measurement
equipment that affected the model fit. The measured reflection
at the boundaries of the images was slightly lower compared
to the center of the image. The first reason for this was that
the set up of the LED’s in the multispectral device gave a
non-homogeneous field of illumination. The boundaries of the
image were slightly less illuminated and therefore also the
measured reflection tends to be lower. Another explanation
was that more light photons could ’escape’ at the boundaries
of the image due to scattering in the skin, and thus less
photons were captured by the detector. As a result of this
boundary effect, the skin model parameters were fitted poorly
at the boundaries of the image. These boundary effects were
especially observed in the Ddermis-map.

For the second objective, several DCNN architectures were
created that were able to 1) combine the information of the
obtained skin model maps (i.e. chromophore maps) with the
RGB image features or 2) process the information of the
multispectral images directly to obtain a skin lesion classifica-
tion result. The highest AUC (0.87±0.06) was achieved by a
DCNN that fuses the information of the RGB images and the
residual-fblood-Amel maps at a low level in the network. The
reason that the residual map might contain relevant informa-
tion is that cancerous cells can produce higher concentrations
of chromophores that are not described in the skin model, e.g.
keratin [40]. When the skin model cannot fit the measured
reflection accurately due to the high concentration of keratin,
this is captured in the residual map.

The early fused DCNN architecture combines information
of RGB images and skin model maps at a stage where spatial
features are still relevant, whereas a late fused DCNN architec-
ture combines high-level features that are extracted from the
RGB and chromophore maps separately [41]. Although the
information of the input maps is processed in different ways,
no significant difference was seen in the performance of the
early and the late fused networks.

The results do not show significant improvement in the
performance of the DCNN classifier when using multispectral
imaging, compared to the benchmark (AUC = 0.85±0.07). The
main limitation of this study is that a small and imbalanced
dataset was used for the validation and training of the DCNN
classifiers. The large diversity in the lesions’ appearances
might have made it difficult for the classifier to classify the
lesions correctly, since some types of skin lesions had never
been seen in training before. This was also reflected by the
inconsistent performances among different folds. Therefore,
future work should train and validate the DCNN’s with a larger
dataset, enabling a better comparison between the DCNN’s
due to the reduced uncertainty of the performances. Another
limitation of the dataset was that not all benign lesions had
been proved by histological examination. Since a biopsy is an
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invasive procedure, it would be unethical to perform this on all
lesions. Therefore, the possibility that the some benign lesions
were actually malignant cannot be ruled out.

As previously concluded in the review of Brinker et al.
[33], it is difficult to compare the performances of DCNN
skin lesion classifiers across studies. The reason for this is
that most studies use different, nonpublic datasets. Attempts
to tackle this problem have already been made for RGB
DCNN’s, since several large-scale RGB datasets were made
publicly available (e.g. ISBI 2017 Challenge dataset and ISIC
Archive). Such large and widely available datasets should
also be collected with multispectral imaging, but this still
remains challenging. Another issue is that the definition of the
classification problem differs across studies. Most researchers
considered the classification problem of melanoma versus
benign nevi [20] [21] [42]. However, there are also classifiers
that aimed to distinguish 12 skin diseases [43] or even consider
more than 150 different classes [22] [44]. In contrast to these
studies, our DCNN classifies skin lesions into broader classes.
Although the most benign lesions were nevi, the malignant
class was more diverse, containing melanomas as well as non-
melanomas (basal cell and squamous cell carcinomas).

Recent developments show great potential for the integration
of multispectral imaging on smartphones [45] [46]. It is not
unlikely that in the near future a mobile phone will contain
various multispectral imaging applications, which can function
as healthcare tools. This emphasizes the need for a fully
automatic skin lesion classifier based on multispectral images,
which could support the detection of skin cancer at an early
stage.

V. CONCLUSION

This study proposed a new method for skin lesion classifi-
cation, by combining the advantages of multispectral imaging
and DCNN’s. It proved the feasibility of a low-cost multispec-
tral measurement device to provide hemoglobin and melanin
maps, which have great potential to improve a DCNN skin
lesion classifier. Furthermore, the DCNN architectures that
were described in the current study, were able to process RGB
image input as well as the additional information obtained
from multispectral imaging. The performances of these state-
of-the-art networks were comparable with the benchmark.
However, the uncertainty of the performance was still high,
since a small dataset was used. Future work in this field of re-
search should focus on the collection of a large-scale, publicly
available multispectral database, enabling a fair comparison
between several DCNN methods.
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APPENDIX

A. Skin reflection model
A reflection spectra of illuminated skin is dependent on the

composition of the skin, since the biochemical components
determine the absorption and scattering in each skin layer.
The skin reflection model of Jolivot et al. [13] was chosen
for chromophore map calculation. Jolivot’s model was based
on the Kubelka-Munk theory of diffuse reflectance in a multi-
layer medium [47]. In this model, the skin is represented as
a 2-layer medium, i.e. the epidermis and the dermis, which
have both their specific layer absorption coefficient and a layer
scattering coefficient.

The absorption coefficient of the epidermis layer is defined
by:

µa,epidermis(λ) = fmel µa,melanin(λ)

+ (1− fmel) µa,baseline(λ) [cm−1]
(A.1)

where µa,melanin is the absorption coefficient of melanin
and µa,baseline is the combined absorption coefficient of the
other chromophores in skin, e.g. collagen, carotene and keratin
[13]. These absorption coefficients are wavelength dependent
and are tabulated in Table A1 for our measured wavelengths
[13]. Note that the baseline absorption is almost negligible,
meaning that the amount of the epidermis absorption is mostly
dependent on the melanin fraction.

The absorption coefficient of the dermis can be expressed
by:

µa,dermis(λ) = fblood Coxy µa,oxy(λ)

+ fblood (1− Coxy) µa,deoxy(λ)

+ (1− fblood) µa,baseline(λ) [cm−1]
(A.2)

where µa,deoxy and µa,oxy are the absorption coefficient of
deoxygenated and oxygenated hemoglobin [13]. The values
for µa,deoxy and µa,oxy , retrieved from Prahl [48], slightly
differ from each other, shown in Table A1.

Scattering in the dermis is mostly caused by collagen fibers
[14] [49]. The scattering coefficient (µs) was not defined in
Jolivot et al. [13], therefore this coefficient was retrieved from
the Oregon Medical Laser Center website [49]. Although the
scattering in the epidermis is caused by keratin fibers, the
µs of the epidermis is comparable with the µs of the dermis
[49]. Note that the scattering in the epidermis does not have
a critical role, since the thickness of the epidermis is small
[49]. The scattering coefficient for both layers is given by the
following formula:

µs,layer(λ) = 2.0 ∗ 1012 ∗ λ−4.0 + 2.0 ∗ 105 ∗ λ−1.5 (A.3)

The wavelength-dependent reflectance (R) and transmit-
tance (T ) were calculated for each layer with the Kubelka-
Munk equations:

TABLE A1: The absorption coefficients [cm-1] of skin
baseline (µa,baseline), melanin (µa,melanin), oxygenated
hemoglobin (µa,HbO2

) and deoxygenated hemoglobin
(µa,Hb) for our measured wavelengths.

µa,baseline µa,melanin µa,HbO2
µa,Hb

417 nm 2.11 1.24 ∗ 103 2.78 ∗ 103 2.01 ∗ 103

468 nm 1.11 8.46 ∗ 102 1.87 ∗ 102 9.12 ∗ 101

525 nm 6.09∗10−1 5.77 ∗ 102 1.65 ∗ 102 1.88 ∗ 102

548 nm 5.02∗10−1 5.01 ∗ 102 2.50 ∗ 102 2.81 ∗ 102

600 nm 3.62∗10−1 3.70 ∗ 102 1.71 ∗ 101 7.86 ∗ 101

660 nm 2.92∗10−1 2.69 ∗ 102 1.71 1.73 ∗ 101

736 nm 2.59∗10−1 1.87 ∗ 102 2.24 5.90

760 nm 2.54∗10−1 1.68 ∗ 102 3.14 8.29

861 nm 2.46∗10−1 1.11 ∗ 102 5.87 3.72

950 nm 2.45∗10−1 8.01 ∗ 101 6.45 2.23

Rlayer(λ) =
(1− β2)(eKlayerDlayer − e−KlayerDlayer )

(1 + β)2 eKlayerDlayer − (1− β)2 e−KlayerDlayer

(A.4)

Tlayer(λ) =
4β

(1 + β)2 eKlayerDlayer − (1− β)2 e−KlayerDlayer

(A.5)
where Klayer is the backward flux and βlayer is the forward

flux in each layer, expressed by:

Klayer(λ) =
√
2 µa,layer(2 µa,layer + 4 µs,layer) (A.6)

βlayer(λ) =

√
2 µa,layer

2 µa,layer + 4 µs,layer
(A.7)

Hereafter, the total reflectance of a two-layer skin medium
can be approximated by:

Rtotal(λ) = Repidermis +
T 2
epidermis Rdermis

1−RepidermisRdermis
(A.8)
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