
The benefits of system
engineering

methodologies and
tools in designing a
smart and effective

energy storage system

B.A.G. de Wit, M. Talebi, F. Sperling, 
H. Geurink , D. Dombeeck 

Februari 2025



The benefits of system engineering methodologies

and tools in designing a smart and effective

energy storage system

B.A.G. de Wit1, M. Talebi1, F. Sperling1, H. Geurink2 , D. Dombeeck2 ∗†

February 2025

Abstract

An inevitable feature of renewable energy is its unpredictable availabil-
ity. Thus, the global move towards renewable energy means that there
is a huge demand for means to store energy on a large scale (MWh) in
a smart manner [1]. The DNV’s Energy Transition Outlook of 2023 has
predicted over 4,500 cumulative GWh of stationary energy deployments
by 2050 [2]. However, So far the slow response in the battery market
has meant a growing gap between supply and demand, and suitable al-
ternatives in the market still seem few and far between. In this article,
we identify challenges in design and development of such Energy Storage
Systems (ESSs) and by using a case study, describe a methodology to
tackle these challenges in an accelerated effective manner. By combining
the PLCnext Technology with the Nobleo Engineering Methods, we show
how to create an ESS which can be seamlessly transformed from a pro-
totype to a product, without sacrificing robustness and scalability. This
approach to shorten the time-to-market is our answer for the rapid growth
in demand for ESSs. The PLCnext Technology supports development of
software using high-level programming languages, which allows the em-
ployment of readily available tools. The continuous use of these tools,
provides the ability to give long-term quality guarantees to the customer.
Furthermore, we present our approach in a way which makes it easy to
apply to other industrial systems as well, and can be used anywhere where
the quick time to market, scalability and robustness are essential.

Today the various components of the power grid are becoming more intel-
ligent and capable of cooperating in a smart fashion (hence the term ”smart
grid”). As such, it is important to design the functionalities of the Battery En-
ergy Storage Systems (BESS) in this line of development in such a way that they
seamlessly integrate in the grid. These smart systems should include features
that automate this system to a degree that very limited user input is required,
and is continuously connected and responsive to outside stimuli. In this paper
we elaborate on a use case in which the development of these smart functional-
ities was done for an external manufacturer and retailer. For our particular use
case the PLCnext Technology was chosen. For the development of this system

∗1 Nobleo Technology, Eindhoven, The Netherlands
†2 Phoenix Contact, Zevenaar, The Netherlands

1



at Nobleo Technology, we make use of the Nobleo Engineering Methodologies.
The parties and their interactions are illustrated in Fig. 1.

Figure 1: The collaboration of a challenging application, tooling and engineering
methodologies leading to accelerated effectiveness

The challenging application is presented by our customers, who manufacture
and retail BESS systems. Their wish includes realising the best-in-the-market
BESSs with a very short time to market. Users of the BESS only require a
limited amount of interactions to get the system running in their desired way.
The scope of versatile features that are realised in these systems are illustrated
in Fig. 2. The key functionalities are grouped under ”internal system control”
such as Thermal management, Battery Management and Power control; ”user
interface” that includes displaying and connectivity and ”operation functional-
ities” containing the operating modes of the system.

Apart from the local activities and functionalities, these systems also connect
to the cloud. Using this cloud, the end-users always have insights and control
over their system anywhere, as well as enabling support engineers to monitor
these systems at all times guaranteeing maximum up-time.

In order to maintain the competitive position in the market, the realisation
time of the system is considered very short (+/- 2 months to Functional Model
(FuMo) and less than 6 months to field trials). When combining this very short
time planning with the wide range of functional wishes, this product asks for an

2



Figure 2: Extent of scope for professional battery Energy Storage Systems.

effective design method (section 3). Secondly, as the market is growing rapidly
and the request for features and functionalities are rapidly expanding, there is
a need for a flexible and modular embedded core (sections 1 and 2).

Additionally, the designed topology shall allow for (software) field updates
without the need of changing the hardware of the system. Thus, the setup
that is delivered for the field trials, which is in a prototype state, shall have
the ability to be updated to a final product without hardware changes. Using
this strategy the ESS are deployed in a relative short timeline maintaining the
market advantage without penalising the end-user. This all adds up to a fair
challenge in realising this system and requires an effective design strategy.

The rest of this paper is organised as follows. Sections 1 and 2 dive into the
current state of the art of controllers; and the benefits and drawbacks of the
PLCnext Technology that is selected in this design. This is followed by section
3 that elaborates on the Nobleo Engineering Methods and its advantages. In
section 4 the design case of the BESS is discussed. The results of this design case
are presented in 5. Finally the experiences and lessons learned are summarised
in section 6.

3



1 Current state of the art in PLC and embedded
systems

Figure 3: The platform options and their time and effort vs. complexity. The
four sections denote the general application areas with respect to their efforts vs.
complexity concerns. The target area of bottom-right (high complexity, limited
effort) is where our interests lie. The top-right is where Embedded solutions are
located, with their high initial effort also clearly implied.

In the current market of industrialisation most trivial system design choices
make a trade-off between PLCs and (custom designed) embedded solutions.
This trade-off often is based on the time and effort required to build a product
and the level of complexity that can be supported by a platform. Ideally one
would like to spend the least time and effort to create a desired product with a
certain complexity[3]. Fig. 3 visualises this trade-off.

If time to market and modularity are the key factor, often a PLC platform
is a logical choice. PLC platforms often offer a large variety of out-of-the-
box extensions. The proprietary languages, e.g. ladder and structured text
variants, often supported by vendor specific libraries, allow for quick and easy
programming of functionalities. Unfortunately, this comes at the cost of the
complexity limit of used languages, flexibility of working in parallel in the team
and vendor lock-in.

When flexibility and complexity in development are more important than the
time and effort, the (custom designed) embedded solutions are the most logical
choice. The benefits are the freedom of choosing own processor, in/output
methods, protocols, etc. Therefore, this type of platform is a solution tailored
to a specific use case. These platforms support a wide selection of programming
languages, leaving the many options to the programmers. However, in many

4



cases a specific hardware is then to be designed. As seen from fig. 3 this
platform type takes more time and effort to develop.

Alternatively, a few PLC manufacturers have also started to extend the
platforms to support high-level languages (such as python, C++, Matlab) and
even provide a full operating system with a POSIX interface. Fig. 4 shows an
example of a classic PLC that includes the functionality of translating high-level
languages to PLC blocks. This gives the programmer the freedom to program in
the language of choice. However, these types of software platforms still contain
restrictions in terms of specific libraries that are being supported, as well as
limitations on the functionality that can be cast into PLC tasks.

Figure 4: The classic PLC architecture overview. All code is compiled and runs
inside a proprietary runtime environment. There is (limited) support for high-
level languages that are compiled into a function block which is linked to the
proprietary language.

The architecture of a PLC system that includes a Linux kernel is shown
in Fig. 5. As shown, a part of the system can be written in the proprietary
language, and a part can be created through the language of choice. This works
well in platforms where the applications do not need to run in the same runtime
(e.g. high-level languages do not need to run real-time), or there is no need to
share data between the high-level components and the proprietary components.
Hence, these platforms do not natively support functionality synchronisation
between the proprietary and high-level languages. If possible, such functionality
needs to be developed by the user at the cost of time and extra risks.

5



Figure 5: A Linux-based PLC architecture overview. The base PLC program
still runs via the proprietary language within its own runtime environment.
Code developed and compiled in a high-level language is running separately
and therefore not synchronized in the run-time environment, also data is not
consistently shared between the separate tasks.

2 The PLCnext Technology

More often than not, a project starts with a very strict time-line, but also has
the need of collaboration between team members with varying skills and the de-
velopment of specific solutions. In these cases a PLC platform with full support
for high-level language would offer a good option. In our case however, due to
the goal of the product which is power network control, many functionalities
require real-time operation.

Phoenix Contact has developed an ecosystem of automation devices called
the PLCnext Technology, that is capable of running tasks both described by
PLC proprietary means, as well as high-level languages compiled in its Linux
environment. A power feature is the ability to combine these two methods of
programming, and the aim of this platform is to decrease the time and effort
required to build a system, and increase the depth of complexity in the current
trade-off (as shown in Fig. 3). A scheduler is created to run both proprietary and
externally compiled tasks in real-time; and a memory system, called the Global
Data Space (GDS), allows for consistent sharing of data between both. The
high-level languages are not limited to the usage of specific subsets and libraries.
Instead, the entire tool-chain flow of Linux is available. The architecture of this
system is shown in Fig. 6.

This ecosystem supports quick development by having the hardware building
blocks and their associated drivers readily available. Yet, when refined and
advanced algorithms are required, it also provides the means to program using

6



a high-level language. Time and project risks are reduced by not having to
create an own real-time and data sharing mechanism, and made safe and simple
by the fact that consistent cooperation of both refined and simple components
is guaranteed. These general features outline our reasoning for selecting the
PLCnext Technology to realise the development of our BESSs.

Figure 6: The architectural overview of the PLCnext Runtime System. Notice
that this matches the template presented in Fig. 5, and enables real-time syn-
chronisation and a consistent exchange of data of a shared memory space.

3 Nobleo Engineering Methodologies

The V-model is a widely known, and used, system development life-cycle paradigm.
The left hand side of the V-model represents activities ranging from the collec-
tion and the decomposition of requirements, to their refinement into specifica-
tions and the step-wise realisation (i.e., implementation). The right hand side
of the V-model represents the integration of components and their validation.
The V model also communicates the idea that there should be a correspondence
between the activities from the left-hand side and right-hand side. Each refine-
ment from a specification to a solution on any level, is tightly coupled with the
reverse activity of integration and directly informs the validation on the same
level. This idea is often conveyed by the simple formulae “building the thing
right” and “building the right thing”.

The V-cycle is a thorough and reliable process to create a product that
matches the customer request, but comes at the cost of time. Typically, there
is a large time gap between the customer request and the verification with the
customer. Nobleo has come up with a spin to the V-cycle with the goal to
shorten these development cycles and include the customer early in the de-
velopment process [4]. The adapted engineering method called the Triple-V

7



method, which is illustrated in Fig. 7. Instead of developing a full product in
one big V-cycle, the triple-V engineering method follows three V-cycles, with
increasing complexity, respectively. The focus of the first V-cycle is on the fast
creation of a functional model (FuMo), also known as “proof of concept”. This
gives the customer something tangible to use as a base to refine requirements.
The main goal in this cycle is to prove feasibility, create concept designs, and
sharpen requirements. Given the refined requirements, a prototype is realised.
A prototype generally contains more features (ideally full feature set) to get
more data and information on the performance, stability and usability before
the production starts. During the evaluation of the prototype, the customer can
define what shall be included in the final product. Having learned from the pro-
totype, the final changes and optimisations are implemented. In this final cycle
the product is prepared to be manufactured. In the former steps the feasibility,
basic functionality and stability were tackled. Therefore, risks are reduced and
the final product is ready for production. By making use of the triple-V model,
design risks are identified early and the customer is closely involved to assure
an effective design. Given the challenging scope and time-line, this engineering
method is the best fit to realise the Battery Energy Storage Systems.

Figure 7: The Nobleo triple-V system engineering methodology which contains
three cycles that are extending consecutively from FuMo to Final Product.

4 Design case of the manufacturer

In our use case, the manufacturer and retailer have the vision to create the
smartest ESS in the market with a wide range of functionalities on many func-
tional fields as shown in Fig. 2. These functionalities are both local and remote,
and combine a mixture of domains. The market calls for various functionalities,
which should be configurable from one common hardware platform. In this case
we take the example of three distinct product types.

The three product types are visualised in Fig. 8. The first system is used for
on- and off-grid AC power and energy purposes such as grid reinforcement. The
second system type serves the purpose as a vehicle charger that for example is
used for construction projects where no emissions are allowed. The last system
type is the energy trading system that solely is connected to the grid.

8



Figure 8: The ”core platform” that is developed for the manufacturer is reusable
for all system types, leading to a single software platform to maintain.

The commonality between the all of the products is that each is a variant
of the same battery energy storage system (BESS). However, each of the three
products is adapted to serve a specific market use-case. All three therefore share
a a common core in hardware and functionality.

As the majority of functionalities of the ESSs are shared among the products,
a system decomposition is created to house all features based on their common
denominator. The structural decomposition as created is shown in 9. This
decomposition serves as the blueprint for the development of all the products.

Figure 9: System structural decomposition of the Energy Storage Systems.

The structural decomposition shows that the hardware is abstracted to com-
mon architectural parts. The software to operate the ESS system runs in the
Energy Management System (EMS). This EMS connects to the majority of sub-
components and houses the majority of system features. As expected, a major
part of the software is shared over different system types, therefore, to ensure
maintainability a ”core platform” is created that runs on all system types. The
”core platform” is a mix of the hardware (including the PLCnext Controller,

9



and other core devices in the EMS) and the codebase. By creating a modular
setup, and standardising the ”core platform”, the complexity of maintenance is
decreased, the feature extension is simplified and the addition of new hardware
does not negatively impact the high-level system. Moreover, production costs
are also decreased by standardising the processes around production and quality
control of the core hardware and software.

5 Results

For creating the first version of the system - a basic 3-phase ESS - the cus-
tomer requirements were very thin. Therefore, a rapid prototyping approach
was chosen, which in this case meant developing a FuMo with a small team of
3 engineers in a short time-span, such that at a later stage the project could be
tailored to the customer’s wishes. The FuMo was built within two months (Fig.
10) and served as the first verification towards the feasibility of the project and
the solutions therein. Various solutions were chosen to realise this FuMo, for
instance on the software-side the PLC language (Structured Text) was employed
more extensively, with the aim of replacing the components with more classical
and better expressive high-level languages in later stages. While using this lan-
guage brings limitations to the complexity of the functionalities, it enabled the
possibility to quickly verifying the system integration. The limitations some-
times forced non-elegant solutions and undermined the creation of a modular
design, which however was tolerated due to the nature of the project. The addi-
tional incurred effort was offset by the fact that this step gave more insights into
the risks and helped the customer refine their requirements early. This resulted
in a substantial percentage of the codebase being written in the proprietary
language, compared to the C++ language. This fact is demonstrated in Table
1.

After the completion of the FuMo and verifying the minimal viable product
(base functionality, happy flow) with the customer, the next set of system re-
quirements was defined. These requirements served as the input for the creation
of a prototype. As the maturity and complexity of the system functionalities
increased, the need for high-level programming languages increased. Secondly,
the team capacity increased to realise the requested functionalities. Due to both

Codebase C++ lines Structured Text Total C++
of Code lines of Code Percentage

FuMo 7,047 2,523 9,570 74%
(Sep. 2022)

Proto 12,519 2,589 15,108 83%
(Dec. 2022)

Pre-production 35,130 4,304 39,434 88%
(April 2023)

Current Product 56,387 5,639 63,827 91%
(Jan. 2024)

Table 1: Proportion of high-Level language implementation within the codebase
over time

10



these factors and also employment of tooling (version control, CI/CD) which
was available for high-level language development, the ability to perform tasks
in parallel by the team members also increased over time.

The code that was developed in the existing proprietary language served as
a base, and remained there to be used in the hardware interface. This served
two purposes. Firstly, the full system was already proven functional. By replac-
ing low-level complexity items with full-fledged high-level components, the base
functionality remained equal. Second, this gave the freedom to start replac-
ing the software components in phases without the need of making hardware
changes. Depending on the complexity requirement for each functionality the
replacement was scheduled and realised whilst the system remained fully oper-
ational for testing and validation. It took only three months (Fig. 10) to build
a prototype that was available for customer field trials. As earlier discussed in
Table 1, we can see that at this stage the share of the proprietary language in
the codebase decreased by 35%.

The first prototypes served as field trial systems used by end-users, and useful
data was gathered from these systems. The manufacturer was able to test, verify
and validate these prototype systems against the end-user expectations before
the development into a full-fledged product was resumed. In the prototypes, the
majority of the features of the systems were captured, however, mainly these
included the sunny-day scenarios. The software included a limited capability
to automatically handle errors and a limited amount of code was covered by
automated software-in-the-loop tests.

By evaluating the performance of the prototypes together with the manu-
facturer, the project continued into the product development phase. Not only
shall the product function in the happy flow, additionally it should also be able
to handle the warnings and error cases. In order to extend the stability of the
product the amount of automatic software tests were extended, and code check
mechanism were implemented. By doing so, faults could be caught before even
having occurred in the field at the customer side.

These tests and checks did require the code to be a high-level language
(HLL), as for these type of languages there are plenty of tools available. There-
fore, it is important to have a codebase with a high proportion of C++ code in
this project. As discussed in Table 1 the amount of proprietary language lines
of code were again decreased by another 30%.

After the product development phase, the project was transferred to the
manufacturer to start the normal Life Cycle Management. From there, the
current codebase of the project shows that the proportion of the C++ code has
increased even further.

From Table 1 it can be deduced that the amount of proprietary lines of code
did extend throughout the process compared to the start. As we expected that
during the process the proprietary language was replaced by C++ code as much
as possible, this can be seen as a strange phenomenon. However, the main link
between C++ blocks and hardware and C++ blocks is done via the GDS. As
previously discussed, the GDS is a mechanism in the PLCnext runtime system
to consistently and efficiently exchange data between components. This is done
by the PLCnext Technology’s proprietary framework. The specifications of the
GDS ports and their connections are translated into files, and thus count as
”Structured Text lines of Code”. Therefore, if the complexity of the software
increases, the amount of links between components increases which leads to an

11



increase in the amount of lines of proprietary code.

Figure 10: Timeline of the project development steps and their outcomes show-
ing the impact of the Nobleo design methodologies to develop a complex product
in a very short time-span.

6 Conclusion

By having realised the first MVP ESS in two months and the prototypes three
months later, we have shown the positive impact of the PLCnext Technology
and effectiveness of Nobleo design methodologies in the design of Energy Storage
Systems (ESSs). Moreover, the additional choice of the PLCnext Technology,
tools and the Nobleo triple-V model facilitated the seamless move from prototyp-
ing to production. The ability to develop software using high-level programming
languages (in this case C++) allowed us to use a plethora of off-the-shelf tools
to help in validation and quality improvement of our software base. Moreover,
the continuous use of these tools, enables us to provide long-term support and
quality assurances to the customer.

However, there were also lessons learned regarding how this process can be
improved in the future. Throughout our development we learned that building
structures to gather and analyse diagnostics data early on, provides a lot of value
to developers and speeds up the arduous task of debugging and diagnosing issues
in products. Additionally, building and / or integrating software support tools,
such as automated build tools and static analysers, remote monitoring solutions,
which initially were not seen as essential proved to make a significant difference
in the long run.

We believe that these lessons and experiences are not exclusive to the de-
velopment of ESSs, and are readily translatable to other types of industrial
systems, and can be used in any context where quick time to market, scalability
and robustness are essential.

References

[1] M. Storm van Leeuwen, P. Oortman, ”Bancheanalyse 2022-2023”, Energy
Storage NL, 2023

[2] Sverre Alvik et al. , ”Energy Transition Outlook 2023”, DNV-Group, 2023

[3] ”Heeft de PLC nog een toekomst?”(whitepaper), Phoenix Contact, 2021

12



[4] Getting grip on your development process: Our Way Of Working.
(2023). Nobleo Technology. https://nobleo-technology.nl/projects/getting-
grip-development-process/

13




