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Introduction

The rapid growth of the photonic integrated circuit (PIC) 

market has introduced new challenges to the manu-

facturing process, particularly in the inspection and 

quality control of photonic wafers. Photonic chips are built 

on different substrates compared to traditional chips and 

feature unique geometries, such as the absence of sharp 

90° angles, as light cannot bend at such angles. These 

differences render established inspection methods 

ineffective for photonic wafers. 

In the rapidly evolving field of photonics, the integrity of photonic wafers is paramount 

to the performance and reliability of optical devices. These devices form the backbone 

of technologies ranging from high-speed communication systems to cutting-edge 

sensors. Defect inspection on photonic wafers involves sophisticated techniques and 

technologies designed to identify and mitigate imperfections that could compromise 

device functionality. This article explores the various techniques used in defect 

inspection, the challenges encountered, and the latest advancements that are 

enhancing the accuracy and efficiency of these processes.

The absence of established libraries of standardised 

components forces manufacturers to experiment with 

both the design and manufacturing processes, leading to a 

complex interplay between the two. This experimentation 

often results in yield issues and forces smaller companies 

to spend significant time on testing the products they 

create. The time required to test a new design, and the 

absence of tested and proven designs make it difficult 

for such companies to scale their operations efficiently.

To address these issues, advanced surface-inspection 

solutions have been developed within the MEKOPP [1] 

NXTGEN [2] project, combining cutting-edge hardware, 

sophisticated machine learning algorithms, and innovative 

software frameworks. From cost-effective offline solutions 

that support early-stage product development to high-end 

inline systems for large-scale production, these tools 

provide a comprehensive approach to defect detection 

and are designed to meet the unique demands of photonic 

wafer inspection, enabling manufacturers to overcome 

the limitations of traditional methods.

Nobleo has played an active role in the development 

of a photonic wafer inspection system, contributing 

to two key areas:

1.  Developing camera-control software to enable high-

speed surface scanning of photonic wafers.

2.  Implementing machine-learning-based approaches 

to detect defects on photonic wafers.

This article provides an overview of the technical 

challenges and shares the most important insights gained 

throughout the development process.
The Helios system, a visual inspection tool for performing defect 
inspection on photonic integrated circuits.
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Helios photonic wafer-inspection tool

The development of wafer-defect-inspection solutions for 

the photonics industry has brought together expertise of 

Nobleo, Integrated Mechanization Solutions (IMS), 

Workfloor, and Settels Savenije. An outcome of this 

collaboration is the Helios system (Figure 1), a photonic 

visual inspection tool, which works alongside the Sirius 

active probing system developed by IMS [3]. These tools 

address the stringent requirements of defect detection in 

photonic integrated circuits (PICs). LioniX International is 

actively involved as a representative of the photonics industry.

Key system features developed by Nobleo include:

1.  Scanning areas of interest (AOI): 

 Targeting specific regions of the wafer for inspection.

2. Wafer alignment: 

  Ensuring accurate knowledge of the position 

of the wafer within the machine.

3. Height mapping: 

 Creating a height profile to guide autofocus adjustments.

4. Defect detection: 

 Applying algorithms to identify surface imperfections.

5. Defect reporting: 

  Documenting defect locations in wafer coordinates 

for further analysis.

Helios is built for efficiency and precision, inspecting up 

to ten 4-inch wafers per hour. It supports resolutions 

of 0.125 µm and 0.5 µm per pixel, enabling the detection 

of small defects. Brightfield and darkfield illumination 

modes ensure adaptability to various inspection needs.

Users can customise test recipes by defining AOIs, 

inspection types, illumination settings, resolution and 

alignment markers. The system generates detailed test 

reports, including defect positions and types, providing 

essential data for quality control and process optimisation.

About Nobleo

Nobleo is an Eindhoven-based engineering company 

with 100+ employees and three business units:

1. Autonomous and Intelligent Solutions

2. Intelligent Embedded Solutions

3. High Tech Systems

The Nobleo Autonomous and Intelligent Solutions 

business unit is involved in developing machine-learning 

solutions for high-tech systems and autonomous 

robotics. 

The strategic focuses are:

•  3D object tracking (for outdoor applications):

 - multi-modal sensor platform;

 - AI object detection;

 - sensor fusion (stereo cameras, LiDAR, encoders).

• 3D image processing (for outdoor applications):

 - sensor design & integration;

 - edge processing;

 - integration with motion control.

• Surface inspection (for high-mix, low-volume  

 production):

 - data annotation;

 - AI anomaly detection;

 - AI object detection.

• Precision alignment (for high-tech systems):

 - sensor selection & calibration;

 - feature-matching networks;

 - system integration & calibration.

It is Nobleo’s ambition to create machine-learning 

solutions by leveraging know-how of mathematics, 

physics, optics, electronics and mechatronics to come up 

with innovative solutions for their customers.

Height pro�le of a full wafer. The residual RMS error of 1 µm is smaller than the 2 µm depth 
of �eld of the camera.
(a) Height measurements.
(b) Resulting height map.

2a 2b

3a 3b

The output of the inspection tool. 
(a)  A heatmap showing anomalous regions of the full wafer can be created to highlight polluted areas.
(b) Detected defects are also overlayed on top of the design.
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Benefits

The photonic visual inspection tool Helios offers several 

advantages that enhance the efficiency and accuracy 

of photonic wafer-inspection processes:

•  Reduced inspection time and improved consistency:

  Helios streamlines the inspection process, ensuring 

faster and more reliable results.

•  Detailed defect visualisation: 

  Wafer defects as small as 100 nm can be visualised 

directly on top of the design file (GDSII format, GDS = 

Graphic Design System), significantly reducing the time 

required to determine whether a wafer is acceptable 

(OK) or not acceptable (NOK).

•  Web-based annotation: 

  Process experts can collaborate remotely to establish 

a baseline definition of defects, leveraging a web-based 

annotation platform.

•  Rapid anomaly detection: 

  An anomaly detection network can be developed for 

each wafer design within just 0.5 hour, enabling quick 

adaptation to new designs.

•  Custom defect classification: 

  Machine-learning tools are used to co-develop tailored 

defect-classification algorithms, improving the accuracy 

of defect identification.

•  Robust data storage: 

  A 64-TB data storage solution provides immediate access to 

wafer data files, supporting efficient analysis and traceability.

•  High throughput: 

  The system can inspect up to ten wafers per hour, 

making it suitable for industrial-scale operations.

Height mapping

One of the primary challenges in this field is scanning 

photonic wafers with high-magnification objectives. The 

limited depth of field of the imaging system compared to 

the local height variations on the wafer poses a significant 

obstacle. To maintain image clarity during scanning, the 

microscope objective, designed by Settels Savenije, 

incorporates a high-speed autofocus sensor. To filter out 

height-measurement errors on sharp edge transitions, the 

sensor is used to measure the wafer topography, generating a 

detailed height profile of the wafer; see Figure 2. This enables 

the autofocus system to dynamically adjust during scanning. 

As a result, the system achieves high-speed scanning without 

sacrificing image quality. This allows the user to scan 

surfaces with a resolution of up to 125 nm per pixel, 

producing the detailed images necessary for defect detection.

Defect maps

The inspection tool leverages state-of-the-art AI algorithms to 

generate detailed defect maps; see Figure 3. These maps provide 

critical insights into wafer quality by pinpointing the position 

and type of detected defects, and are seamlessly integrated with 

a Manufacturing Execution System (MES), enabling further 

analysis and streamlining the inspection process.

For high-mix, low-volume production, where visual 

inspection is a common practice, these maps significantly 

reduce the time required to identify issues. By cross-

referencing defect positions with the wafer design file, 

non-critical defects can be filtered out, allowing engineers 

to focus on the most relevant problems. Additionally, the 

maps facilitate root-cause analysis by enabling the 

comparison of defects across consecutive processing steps, 

helping to identify and address underlying issues in the 

production process.

Beyond defect detection, the tool supports process quality 

evaluation by linking defect statistics with process 

parameters, offering valuable insights for optimising 

manufacturing workflows. Engineers can use the defect 

Defect data is organised by creating maps linked to high-resolution scan images.
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maps to assess wafer-level issues quickly, while high-

resolution images from the scans can be loaded for 

a more detailed analysis when needed; see Figure 4. This 

combination of defect mapping and in-depth imaging 

ensures a more efficient and accurate approach to quality 

control in photonic wafer production.

AI-driven defect detection: a two-phase approach

The integration of artificial intelligence (AI) into defect 

detection for photonic wafers follows a carefully structured 

two-phase approach, designed to address the challenges 

of both early development and large-scale production.

In the initial phase, the focus is on supporting early-stage 

development through an offline scanning solution. During 

this stage, algorithms requiring minimal annotation effort, 

such as autoencoders, are employed. These algorithms are 

designed to deliver results quickly, even if they are not yet 

perfect or fully optimised. The primary goal of this phase 

is to gain a deeper understanding of the defect-detection 

problem, build an initial dataset, and provide support for 

visual inspection. This phase is particularly valuable for 

identifying patterns and laying the groundwork for more 

advanced solutions, enabling teams to iterate rapidly 

and refine their approach.

As the system transitions to the scale-up phase, the focus 

shifts to inline scanning solutions that are fully integrated 

into the production line. This phase leverages the insights 

and datasets developed during the first phase, but it requires 

a larger and more thoroughly annotated dataset to achieve 

the desired level of accuracy and autonomy. By building on 

the foundation established earlier, the system evolves into 

a fully autonomous solution capable of detecting defects 

in real time during production. This ensures that the 

inspection process is not only faster but also more reliable, 

meeting the demands of industrial-scale operations.

Together, these two phases create a robust pathway 

for integrating AI into defect detection, starting with 

exploratory development and culminating in a mature, 

production-ready solution. This approach ensures that the 

system is both adaptable and scalable, addressing the needs 

of the photonics industry at every stage of the production 

lifecycle.

NoblAI

Nobleo’s proprietary machine-learning framework, NoblAI.

5

Nobleo has developed its own machine-learning frame work, NoblAI, 

designed to help customers create and maintain machine-learning 

networks with ease; see Figure 5. The framework simpli�es the process of 

managing users, creating projects, and adding datasets. It also supports 

the integration of various machine-learning networks, such as object 

detection, anomaly detection, and segmentation, into these projects. 

Once the networks are added, users can train, evaluate and deploy them 

seamlessly. 

To streamline these tasks, NoblAI relies on blueprints: prede�ned sets of 

parameters that cover the majority of use cases. These blueprints allow 

most tasks to be executed without requiring parameter adjustments, 

though customers can modify them when �ne-tuning is necessary. 

This �exibility ensures that the framework can adapt to a wide range 

of applications while maintaining ease of use. 

One of the standout features of NoblAI is its ability to reduce the 

annotation e�ort required to train machine-learning networks. By 

sorting images in a dataset based on anomaly scores, the framework 

prioritises the most critical images for annotation. Images with the 

highest anomaly scores are annotated �rst, ensuring that the most 

relevant data is addressed early in the training process. 

Additionally, the framework’s anomaly-detection networks can suggest 

bounding boxes for object-detection networks, allowing annotators 

to focus on re�ning these suggestions rather than starting from scratch. 

This approach not only saves time but also improves the consistency 

of the annotation process.
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tolerant of small annotation errors, further reducing 

the burden on human annotators. The output includes 

heatmaps and overview maps that highlight potential defect 

hotspots, providing a foundation for further analysis.

Object detection

The second approach is object detection, which classifies 

and localises defects with near-pixel-perfect accuracy. 

Object-detection networks require more extensive and 

annotated datasets, as they are trained to recognise specific 

defect types. These networks process a 20-megapixel image 

in approximately 250 ms. By focusing on precise defect 

localisation, object detection provides detailed insights 

into the nature and position of defects, making it ideal 

for scenarios where accuracy is critical.

Classification per patch

Another method is classification per patch, which analyses 

small patches of the image, typically 64x64 or 96x96 pixels, 

and assigns a single classification label to each patch. 

While this approach offers limited spatial accuracy, it is 

extremely fast, processing a 20-megapixel image in just 100 

ms. This makes it suitable for quickly identifying defects 

in scenarios where precise localisation is not required.

Combined network 

Finally, a combined network approach integrates patch 

classification with anomaly detection. This hybrid method 

first uses patch classification to quickly and roughly 

identify potential defects. Anomaly detection is then 

applied only to the flagged patches, providing pixel-perfect 

results for the most critical areas. This combined approach 

balances speed and precision, ensuring efficient 

and accurate defect detection.

Defect-detection algorithms

The defect-detection process for photonic wafers involves 

handling images with extremely high resolution, each 

measuring 4,504x4,504 pixels. These images are too large 

for standard object-detection networks to process directly, 

so they are divided into smaller patches. The size of these 

patches is carefully chosen based on the specific requirements 

of the detection network, ensuring an optimal balance 

between computational efficiency and detection accuracy.

To address the diverse needs of inline and offline defect 

detection, multiple machine-learning networks are 

employed, each optimised for a specific purpose.

Anomaly detection

The first approach is anomaly detection [4], which identifies 

regions on the wafer that deviate from the expected norm; 

more specifically, unsupervised anomaly detection using 

an autoencoder network. Autoencoders learn a compact 

representation of the input data. Anomalies can be detected 

by comparing the reconstruction error (difference between 

input and output) of the autoencoder. When the model 

encounters data that significantly deviates from the learned 

patterns, the reconstruction error tends to be high, 

indicating an anomaly. 

This method generates heatmaps with probability scores 

for each pixel, highlighting potential defects. Anomaly 

detection is highly efficient, processing a 20-megapixel 

image in approximately 320 ms (on an Nvidia RTX A4500 

GPU). One of its key advantages is its minimal reliance on 

annotated data. These networks can deliver meaningful 

results even without annotations (unsupervised), making 

them particularly useful in early development stages or 

when labelled datasets are limited. Additionally, they are 

Outputs of the di�erent algorithms. 
(a) The anomaly detector produces a heatmap.
(b) The object detector produces accurate location and classi�cation information for each defect.
(c) The combined network roughly identi�es potential defects, after which the anomaly detector is run for all �agged areas.

6a 6b 6c
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The choice of network depends on the specific 

requirements of the inspection process, such as the need 

for speed, accuracy or detailed localisation; see Figure 6.

The success of these algorithms depends on the quality and 

quantity of the training data. Anomaly-detection networks 

require relatively little annotated data, as they focus 

on learning the characteristics of defect-free regions. 

In contrast, object-detection networks demand larger, well-

annotated datasets to achieve high accuracy. To streamline 

the annotation process, tools like NoblAI (see the text box) 

prioritise images with the highest anomaly scores, ensuring 

that annotators focus on the most critical data. NoblAI can 

also suggest bounding boxes for defects, allowing annotators 

to refine these suggestions rather than starting from scratch, 

significantly reducing the time and effort required.

Wafer alignment

Accurate wafer alignment is a critical step in the inspection 

process, ensuring that images captured during scanning 

are precisely linked to the wafer’s design. While rough 

alignment is typically known beforehand, fine alignment 

requires a more sophisticated approach to achieve the 

necessary precision. This process begins by capturing 

images of fiducials – specific alignment markers on the 

wafer – and using them to align the images to the design.

To localise these alignment markers, the system employs a 

state-of-the-art feature-matching neural network. The vector 

description of an alignment marker is added to the test recipe 

and a template of the marker is rendered. The system then 

scans the wafer to locate the marker. The marker template and 

scan image are used as input image pair for the neural network, 

calculating a set of corresponding keypoints (matches) between 

the two images. These keypoints represent the locations where 

parts of the alignment marker are detected; see Figure 7.

Similar to the defect-detection algorithms described earlier, 

the high-resolution input images used in the alignment 

process are too large to process directly. Therefore, the same 

patching approach is applied here. The neural network is run 

on each patch, generating matches for the alignment marker. 

These matches are then combined and filtered using a 

RANSAC [5] algorithm to determine the final position of the 

marker. This approach ensures that the alignment process is 

both robust and accurate.

The localisation algorithm achieves a position estimate with an 

accuracy of ±1 pixel, corresponding to a physical accuracy of 

0.125 to 0.500 µm, depending on the camera resolution used. 

By combining the detected location of multiple fiducials spread 

across the wafer, the transformation between each image and 

the design can be calculated, allowing the system to overlay 

detected defects on the design file for further analysis.

Defect-inspection results

The added value of the defect-inspection tooling depends heavily 

on the performance. In close collaboration with photonic 

foundries, such as LioniX and a recent Swiss customer, 

the following three use cases have been defined, for which 

the algorithm performance is being validated (Figure 8).

Inspection on component level (use case 1)

The first use case relates to the capability of the software to 

detect process variations. Manufacturers of high-mix, low-

volume photonic assemblies spend significant time testing 

their products electrically and optically. Algorithm-

validation activities are planned to perform inspections 

on component level. The objective of this track is to find 

a correlation between functional behaviour and component 

assessment with machine learning. When found, this will 

allow photonic foundries to reduce effort in active testing, 

which saves time and money from critical resources.

Critical defect detection (use case 2)

The second use case focuses on the detection of critical 

defects. Defects on light-tunnelling structures are much 

more function-critical than a particle on a non-functional 

Filtered matches of the �ducial template on a scanned image (left), and the template overlayed on the scan (right).

7a 7b
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area of the wafer. The performance of the algorithms is 

evaluated for defect maps generated with the anomaly 

detector when filtered with design information.  

The software outputs defect maps for each processing step 

that can be overlayed with the design file (available to the 

manufacturer only). This allows quality and production 

engineers to assess critical defects only. By analysing 

the series of maps for consecutive processing steps, 

an understanding of the origin of the defect in the more 

than 50 processing steps can be created.

Categorise defects (use case 3)

The third and final use case classifies the detected defects 

into a customer-specific defect category. Photonic foundries 

have an extensive set of labels for different defect types 

linking to the different processing steps. Training an object 

detector for such a set requires sufficient examples for each 

defect and substrate type. This is a practical challenge 

for smaller foundries. Therefore, the annotation time that 

customers put in should be time-boxed to balance benefits 

and cost. Object-detection networks are rolled out starting 

with course defect categories and making them more and 

more granular over time as the annotated dataset grows. 

This allows for gradual improvement and granularity 

of the categorisation.

Conclusion

The development of surface-inspection solutions for 

photonic wafers is tailored to meet the specific needs 

of different stages in the product lifecycle, from early 

development to high-volume production. By offering both 

cost-effective offline solutions and high-end inline systems, 

the inspection process is adaptable, scalable and efficient.

During the early phases of product development, a flexible 

offline scanning solution is employed. This approach is cost-

effective and supports visual inspection by providing detailed 

scans of produced parts. The algorithms used in this phase 

can identify at least the most critical defects, ensuring that 

early-stage issues can be addressed promptly. Additionally, 

scanning a variety of wafers during this phase helps build 

an annotated dataset, laying the groundwork for more 

advanced machine-learning models. This offline solution 

has already garnered enthusiasm from lead customers, 

highlighting its value in supporting early-stage development.

As production scales up, the focus shifts to a high-end, 

custom inline scanning solution tailored for high-volume 

manufacturing. This system performs real-time inspection 

of produced parts, applying validated inspection algorithms 

to ensure consistent quality. The inline solution is designed 

to integrate seamlessly into production lines, providing 

a robust hardware and software platform.

By addressing the unique requirements of each phase, these 

surface-inspection solutions ensure that photonic wafers are 

inspected with precision and efficiency, supporting both 

innovation and scalability in the photonics industry.
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Use cases for validation of algorithm performance.
(a)  Inspect on component level:
 Train an anomaly detector on a speci�c component to monitor process quality and/or component-related defects.
(b)  Detect critical defects from design info:
 Train an anomaly-detection network on dies and AIOs in dies of a wafer and �lter the defect map in a post-processing step using design information.
(c) Categorise defects:
 Train an object-detection network to classify defects into the right category.
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