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Introduction

High-tech positioning systems aim to position a system very 

accurately. This often goes hand in hand with high velocities 

and accelerations. High controller bandwidths and mutual 

decoupling of the various degrees of freedom (DoFs) are 

desirable for obtaining the best system performance. 

Typically, one actuator is needed per actively controlled DoF. 

Volume conflicts, design choices (such as symmetry for centre-

of-gravity positioning) or actuator force limitations often lead 

to an over-actuated system. In these systems there are more 

actuators than actively controlled DoFs (and sometimes 

even more actuators than observable DoFs); see Figure 1. 

In motion control, the goal is usually to control the rigid-

body movements, i.e. the actively controlled DoFs. This is 

done by decoupling the MIMO (multiple input, multiple 

output) system into logical directions through combining 

physical actuator forces in such a way that a resultant force 

is applied in only one specific logical direction. 

High-tech positioning systems require high controller bandwidths and the decoupling of 

the various degrees of freedom (DoFs) to obtain the best system performance. Typically, one 

actuator is needed per actively controlled DoF, but practical design considerations often 

lead to an over-actuated system. It is shown here, however, that the freedom provided 

by over-actuation can be used to not only decouple rigid-body modes, but also to isolate 

non-rigid-body resonance modes. Thus the performance and/or robustness of the 

controlled system is improved without actually having to add an additional control loop.

As an example, consider a symmetrical beam with two 

DoFs, a translation and a rotation, and actuators on the left 

and right ends of the beam; see Figure 2. Typically, the sum 

of the actuators drives a translation and their difference the 

rotation, i.e., for translation, the two forces have the same 

direction and, for rotation, the opposite direction. This 

mapping can be captured in a distribution matrix, which 

is referred to as actuator matrix. This decoupling matrix 

is often based on geometry, mass and inertia properties 

of the system and decouples to the principal axes of inertia. 

In a similar way, the sensor matrix converts sensor readings 

to logical coordinates. The mathematically obtained de coupled 

system is referred to as compensated mechanics (see Figure 

3). The term ‘compensated’ is used to distinguish between 

‘raw’, i.e. physical, inputs/outputs and a system with AM and 

SM that works in logical (control-oriented) inputs/outputs:

 

[* Equation 1 *]
 𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨 

 

[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]

 

Here, P
CM

 is the compensated mechanics plant, SM is the 

sensor matrix, P
raw

 is the ‘raw’ plant, and AM is the actuator 

matrix. Thus, using an actuator matrix and a sensor matrix 
If a system contains more actuators than controlled DoFs, it is called 
an over-actuated system. (Source: [1])

1

Example of a symmetrical beam with forces F
1
 and F

2
 on the left 

and right ends, respectively.
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together with the ‘raw’ plant, the compensated mechanics 

are obtained. This transfer function describes the system in 

logical/functional DoFs. If the DoFs are along inertial axes 

this can also result in decoupled system behaviour, which 

then turns the control problem into a series of (decoupled) 

SISO (single input, single output) control tuning problems. 

Typically, this is the preferred route for the control design 

of high-performance mechatronic motion systems. 

The actuator matrix maps the input signals to the physical 

actuators in such a way that only one functional input 

direction is actuated. All other specified directions should 

not be affected. Consider the beam shown in Figure 2; 

when this system is decoupled correctly, rotations can 

be made without making a translation and vice versa. 

A practical method to derive the actuator matrix AM (for 

rigid-body-mode decoupling) is to use a measured transfer 

function from physical actuator inputs to logical outputs 

TF
raw

(ω) = SM ∙ P
raw

(ω) and define a frequency point at 

which the transfer function is mass-dominated (typically 

a low-frequency point), ω
mass

, in a high-coherence (> 0.9) 

area, then: 

 

[* Equation 2 *]

 𝑴𝑴inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐫𝐫𝐫𝐫(𝜔𝜔mass) ∙ 𝜔𝜔mass2
 

 

[* Equation 10 *]𝑨𝑨𝑴𝑴 = (𝑺𝑺𝑴𝑴 ∙ 𝑽𝑽o ∙ 𝚲𝚲 ∙ 𝑽𝑽IT ∙ 𝑯𝑯)−1𝑴𝑴model−1

 

Assume now an ideal transfer function (inverted mass 

matrix) in the functional direction, i.e. along inertial axes, 

M–1 (this matrix need not be exact, but it is always square 

and usually diagonal). To obtain the actuator matrix, the 

following equation can then be used: 

 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]
 𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1

 

 

[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]

 (1)

From which follows:

 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]
 𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1

 

 

[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]

 

If a system contains as many actuators as controlled DoFs, 

the measured mass matrix M
inv–meas

 will, if all motions 

can be achieved, be a square, full-rank matrix. As a result, 

the actuator matrix AM will also be square and unique. 

With an over-actuated system, there are more logical inputs 

(transfer function columns) than system outputs (rows). In 

such cases, the measured matrix TF
raw

(ω
mass

) is not square 

and there is not one unique AM that can solve Equation 1. 

Here, the matrix inversion is often done using what is 

known as a pseudo-inverse. The pseudo-inverse calculates 

an optimal (minimum-energy) result, which is a solution 

AM = M
inv–meas

–1 ∙ Minv , but not the only one! The solution 

space of all possible solutions to this equation can be 

calculated. In linear algebra, this is related to the null-space 

of M
inv–meas

–1, which is then not empty.

Physically, this means that there are multiple actuator 

distribution combinations possible for obtaining the 

desired effect of diagonalisation, i.e. decoupling. In the case 

of the beam mentioned earlier (Figure 2), if there were 

a third actuator, then the system would be over-actuated. 

There would be multiple combinations possible for 

the distribution of the forces over the actuators such 

that only a rotation or a translation is obtained. 

This article provides an opportunity to use this design space 

to not only decouple rigid-body modes, but also to isolate 

non-rigid-body resonance modes. It is shown here that the 

freedom provided by over-actuation can be used to improve 

the performance and/or robustness of the controlled system, 

without actually having to add an additional control loop. 

As an example, by isolating non-rigid body modes, 

a bandwidth-limiting resonance can become ‘invisible’ 

for the rigid-body input. It could also be that tracking 

performance and settling improve, as the disturbing non-

rigid-body modes are either not or less excited.

To do this analysis, a simple and practical example is used, 

which will be presented first. Then the theory of this 

method is discussed and how it can be applied to the simple 

example. Following the theoretical approach, the practical 

approach will be applied to the example. After presenting 

the simple example, the results for an existing, more 

complex system will be discussed. Finally, this article 

will draw some conclusions. 

The compensated mechanics give a logical-to-logical transfer function. 
Note that the number of sensors/actuators does not have to be equal 
to the number of controlled DoFs.

3

Schematic overview of a simple example consisting of two bodies 
and three actuators.

4
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Simple example

The simple example used in this article is that of a two-

mass-spring-damper system as shown in Figure 4. The goal 

is to control the two rigid-body states [q
trans

 q
rot

]. The system 

has three actuators, two of which are positioned on the 

lower body with mass m
1
 and inertia J

1
, and one of which 

is on the upper body with mass m
2
. For simplicity, it is 

assumed that the spring with stiffness k is only a trans-

lational spring and that the upper body has no rotational 

inertia. In this example, we can see directly that this 

is an over-actuated system and that there are different 

distributions possible that will achieve the goal 

of controlling the two rigid-body modes. 

We will now show that the design space spanned by the 

over-dimensioning can be used to get a beneficial decoupling. 

Theoretical approach 

In the theoretical approach, we assume that the spring 

stiffness and all masses and positions with respect to the 

centre of gravity are known. The system can be described 

with three DoFs (two translations and one rotation). From 

this, the mass matrix M
model

 and stiffness matrix K
model

 

can be derived: 

 

 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]
 𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2] 

 

[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]

 

 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

 𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ] 

 

 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]

Here, the coordinate vector is:

 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]
 𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇

 

 

[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]

 

In order to isolate the three distinct eigenmodes, we 

transform the system into a modal representation with 

modal coordinates. From the K- and M-matrices it is 

possible to obtain the eigenfrequencies Λ and eigenvectors V 

(Matlab: eig(K,M)). Furthermore, it is possible to calculate 

the input transformation matrix H. This matrix describes 

how each actuator force input acts on each eigenmode. 

Writing the compensated mechanics in terms of eigen-

vectors and the input transformation matrix gives:

 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
[* Equation 8 *]
 𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨 

 

[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]
 

Here, V
o
 is the eigenvector matrix for the output nodes 

(sensors), Λ is the diagonal eigenfrequency matrix, and V
I

T 

is the transposed eigenvector matrix for the input nodes 

(actuators). These follow from an eigenvalue, eigenvector 

or modal decomposition of the system. For the example 

discussed in this article, the two matrices are identical. The 

entries of matrices V
o
 and V

I
 can be interpreted as the modal 

contributions for each mode at the physical actuator and 

sensor node locations. In this equation, the actuator matrix 

AM and sensor matrix SM are again present. The desired 

logical outputs are the first two coordinates of q, hence SM 

simply selects the first two outputs:

 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]
 𝑺𝑺𝑨𝑨 = [1 0 00 1 0] 

 

 

The raw mechanics (containing a matrix of transfers from 

each actuator input to each sensor output) are now written 

as a set (sum) of system modes with dynamics described in 

the square, diagonal 3 x 3 transfer function Λ; in this case, 

two rigid-body modes and one resonance T. The eigen-

vectors are the columns of V
o
, which also constitute  

a 3 x 3 invertible matrix, and they define the mode shapes in 

terms of the coordinates 

[* Equation 1 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑷𝑷𝐫𝐫𝐦𝐦𝐫𝐫 ∙ 𝑨𝑨𝑨𝑨
[* Equation 2 *]

𝑨𝑨inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐦𝐦𝐫𝐫(𝜔𝜔𝑙𝑙𝑙𝑙𝑙𝑙) ∗ 𝜔𝜔low2
[* Equation 3 *]𝑨𝑨𝑖𝑖𝑖𝑖𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑨𝑨𝑨𝑨 = 𝑨𝑨−1
[* Equation 4 *]𝑨𝑨𝑨𝑨 = 𝑨𝑨inv−meas−1 ∙ 𝑨𝑨−1
[* Equation 5 *]

𝑨𝑨𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  [𝑚𝑚1 0 00 𝐽𝐽1 00 0 𝑚𝑚2]
[* Equation 6 *]

𝑲𝑲𝐦𝐦𝐫𝐫𝐦𝐦𝐦𝐦𝐦𝐦 =  𝑘𝑘 [ 1 𝑟𝑟21 −1𝑟𝑟21 𝑟𝑟21 −𝑟𝑟21−1 −𝑟𝑟21 1 ]
 [* Equation 7 *]𝑞𝑞𝑞𝑞 = [𝑞𝑞𝑞𝑡𝑡𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 𝑞𝑞𝑞𝑡𝑡𝑙𝑙𝑡𝑡 𝑞𝑞𝑞𝑚𝑚2]𝑇𝑇
 

[* Equation 8 *]𝑷𝑷𝐂𝐂𝐂𝐂 = 𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽𝒐𝒐 ∙ 𝚲𝚲 ∙ 𝑽𝑽𝐈𝐈𝐓𝐓 ∙ 𝑯𝑯 ∙ 𝑨𝑨𝑨𝑨
[* Equation 9 *]𝑺𝑺𝑨𝑨 = [1 0 00 1 0]

, while H maps the physical input 

forces (F
11

, F
12

 and F
21

) to these coordinates. 

We chose a modal system description here because it will 

help in handling the design freedom when determining AM 

later on. 

Now take two cases: 

A)   the classical decoupling considering only rigid-body 

information using the pseudo-inverse;

B)   the decoupling with non-rigid-body information included.

According to our ‘recipe’ for the calculation of AM:

 

[* Equation 2 *]

𝑴𝑴inv−meas = 𝑻𝑻𝑭𝑭𝐫𝐫𝐫𝐫𝐫𝐫(𝜔𝜔mass) ∙ 𝜔𝜔mass2

[* Equation 10 *]
 𝑨𝑨𝑴𝑴 = (𝑺𝑺𝑴𝑴 ∙ 𝑽𝑽o ∙ 𝚲𝚲 ∙ 𝑽𝑽IT ∙ 𝑯𝑯)−1𝑴𝑴model−1

 

 

 

The result is a decoupled system in which two rigid-body 

modes can be controlled independently of each other (case 

a). Since (SM ∙ V
o
 ∙ Λ ∙ V

I

T ∙ H) is non-square (e.g. three 

inputs, two outputs), the pseudo-inverse is used. As will be 

shown later, this solution eliminates the interaction between 

q
trans

 and q
rot

, but resonant behaviour remains in the separate 

transfer functions.

Alternatively, AM can de designed to decouple all of the 

system modes, i.e. using the full modal description of the 

system. Since there are three modes and three inputs, 

this can be done by simply removing SM ∙ V
o
 and using 

the full modal model for inversion. As (Λ ∙ V
I

T ∙ H) 

is square (and full rank), it is invertible (case b). As well as 

decoupling the rigid-body modes from each other, it 

also decouples from the non-rigid-body modes that are 

included. In the final system, we simply neglect the third 

output, which means that when actuating the rigid body, 

the non-rigid-body mode is not actuated. 

This method can also be applied to the simple example. 

When making an open-loop transfer of these compensated 
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mechanics, it can be seen that the eigenmode does not show 

up in the measured transfer. 

Figure 5 shows that when including the non-rigid-body 

mode, the decoupling ensures that the rigid-body input is 

not actuating the non-rigid-body mode. In other words, 

applying this method takes into account that the system is 

not actually a rigid body and that the actuators are in fact 

not on the same body. Based on that, a distribution of forces 

is made that results in a similar movement for all bodies. 

Additionally, in the off-diagonals we see a better decoupling 

(lower magnitude) when including the non-rigid-body mode.

When a step response is obtained with and without 

decoupling from the non-rigid-body mode, an increase in 

the achievable bandwidth is shown that also results in better 

time-domain behaviour performance, as shown in Figure 6.

In summary, when a theoretical model is present, it is 

possible to obtain the exact eigenmodes of the actuators and 

the input distribution matrix. A selection can be made from 

all available modes that should be controlled or decoupled 

from V
I

T ∙ H. The actuator matrix can be calculated  

as AM = (V
I

T ∙ H)–1.

Practical approach

In practice, a measured transfer function is given and the 

individual masses and internal stiffnesses are often not 

known. Therefore, an approach has to be defined for ob -

taining the eigenvectors for the non-rigid-body (NRB) mode, 

along with obtaining the measured mass matrix M
inv–meas

 

as described in the introduction. There are various ways 

to obtain these, but here a singular-value decomposition 

is applied to the imaginary part of the measured transfer at 

the resonance frequency of the targeted mode to obtain the 

eigenvector, resulting in the eigenvector V
I-resonant

. For the 

mass matrix, this procedure is equivalent to today’s practice 

of taking mass-dominated frequency points of measured 

MIMO transfer functions as estimates for M
inv–meas

. 

We now need to find a way to extend this measured matrix 

to make it square and uniquely invertible, i.e. add an extra 

row. This row should represent the third DoF we want 

to decouple, i.e. the resonant behaviour. We suggest adding 

the eigenvector of the system resonance:

 

[* Equation 10 *]𝑨𝑨𝑨𝑨 = (𝑺𝑺𝑨𝑨 ∙ 𝑽𝑽o ∙ 𝚲𝚲(𝜔𝜔low) ∙ 𝑽𝑽IT ∙ 𝑯𝑯)−1𝑨𝑨model−1
[* Equation 11 *]
 𝑨𝑨𝐢𝐢𝐢𝐢𝐢𝐢−𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦−𝐍𝐍𝐍𝐍𝐍𝐍 =  [𝑨𝑨𝐢𝐢𝐢𝐢𝐢𝐢−𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝑽𝑽𝐈𝐈−𝐫𝐫𝐦𝐦𝐦𝐦𝐫𝐫𝐢𝐢𝐦𝐦𝐢𝐢𝐫𝐫] 

 

 

Furthermore, the desired mass-matrix M
inv

 has to be 

extended on the diagonal (with unity). The compensated 

mechanics as shown in Figure 7 can be found for actuator 

matrices including and excluding the non-rigid-body mode. 

From this bode plot, the same conclusion can be drawn as 

from the theoretical approach. By including the non-rigid-

body mode in the decoupling, the diagonal terms are 

no longer actuating the non-rigid-body mode, and the 

decoupling to the off-diagonals has significantly increased. 

In summary, this method works in largely the same way as 

the theoretical approach, only now an estimate for the 

eigen mode V
I-resonant

 has to be obtained from the frequency-

response function. We suggest simply using the peak values 

of one of the rows of the measured TF
raw

(ω) at ω = ω
resonance

 

for each input column. Alternatively, an eigenmode 

estimation method such as singular-value decomposition 

of TF
raw

(ω
resonance

) can be used to find an expression 

for V
I

T ∙ H. Using this non-rigid-body mode eigenvector, 

the measured mass matrix (rigid-body eigenmodes) 

can be extended. 

Compensated mechanics for the theoretical approach for a simple example show that when 
comparing decoupling using the pseudo-inverse (case a, blue) to decoupling that includes 
the proposed non-rigid-body behaviour (case b, red), the diagonals become pure mass lines  
and the o�-diagonals decouple better.

5

Time-domain step response with improved decoupling. The e�ect becomes smaller as the servo 
bandwidth increases.

6
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Full example

Having demonstrated the method for a simple example, 

it can also be applied to a more complex system. For this, 

use was made of a high-performance motion-stage model 

for which the measured transfer functions were generated 

using a FEM (finite-element method) model. The system is 

6-DoF controlled and has an over-actuation of 1 (there is 

one actuator more than there are con trolled DoFs). This 

means that if the actuators are positioned correctly, it should 

be possible to decouple and influence one additional mode 

on top of the rigid-body modes. 

The same method as in the practical approach section 

above was applied. Including the first non-rigid-body mode 

in the decoupling (Figure 8) yields a different decoupling 

compared to the case in which it not included. From this 

figure, it can be seen that including mode nr. 7 results 

in it remaining unactuated. 

Experimenting with decoupling from other modes did not 

always yield a better decoupling, as the ‘obsolete’ actuators 

were not in a position and/or direction that could 

significantly affect a mode. In-plane actuators therefore 

cannot be used to decouple from out-of-plane modes. There 

is thus a physical understanding as to what this extension 

of the actuator matrix can achieve. Another risk is that 

some actuators may exert significant more force than 

others, causing heating or current saturations. 

Conclusion

We have shown that using a pseudo-inverse tells the 

engineer that there is a design space that can be explored 

to obtain potentially beneficial results for decoupling. 

The (pseudo-)inverse property of returning perpendicular 

vectors can be used not only to decouple rigid-body modes 

from each other, as is often done currently, but also to 

decouple from non-rigid-body modes. This provides 

an opportunity for mechanical and mechatronic engineers 

to work together in finding optimal actuator locations. 

Both a theoretical approach and a practical approach have 

demonstrated a method to do this for a simple example. 

Including the non-rigid-body mode in the inverse actuator 

matrix resulted in a mode disappearing from the measured 

response without actively controlling it or observing it. 

Distributing forces such that the mode is not actuated 

means that there is no energy in that mode, and thus 

no response from the mode is visible. The benefit of this is:

•   fewer dynamics visible on the diagonals of the system, 

which potentially allows for higher controller bandwidths;

•   better decoupling between the logical axes, which 

indicates less cross-talk. 

From a more advanced model, we could also see that using 

the design space given by the over-dimensioned system 

could yield beneficial results. However, we could also 

conclude that the design space does not always yield 

beneficial results. The mode to be decoupled (to remain 

unactuated) has to be within the null-space of the rigid-

body modes to be actuated. If this is not the case, 

undesirable coupling may be the result. Taking this into 

consideration in the design phase, mechanical design 

changes and/or changes of actuator locations may improve 

the situation. 
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Compensated mechanics for the practical approach (using measured transfer functions) show similar 
results as the theoretical approach; the system decouples better when the non-rigid-body mode 
(case b, red) is taken into account than when it is not taken into account (case a, blue). 
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Compensated mechanics for a FEM-based motion-stage model show that when including a speci�c 
mode (case b, red) in addition to the rigid-body modes (case a, blue), a better decoupling can be 
found. Here, a subset of the DoFs is shown, i.e. only Z, Rx and Ry. (No numbers along the axes for 
model-owner privacy reasons)
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