

The self-learning robot

The future of intelligent navigation at scale?

Bram Odrosslij, Birgit Plantinga & Mukunda Bharatheesha

December 27, 2024

 Page 2 of 14

Introduction

In today's world, robots are becoming increasingly common in various industries,

from airports to hospitals. Getting these robots to navigate efficiently through

complex dynamic environments remains a challenge with scalability being limited

due to high hardware cost.

Common approaches
Deterministic optimization approaches, commonly used in robot navigation,

require engineers to fine-tune algorithms to handle a wide range of scenarios a

robot may encounter. This process is both time-consuming and challenging due

to the complexity of the problem. Robots employing such approaches often need

expensive hardware to be able to run complex software. An investment that

keeps adding when a robot fleet is expanded.

Learning-based approaches
In recent years, learning-based approaches to navigation have been actively

researched and developed. Particularly, an AI discipline called reinforcement

learning is used to enable a robot to perform a certain type of task by learning

from experience. We developed a novel approach to navigation by applying the

reinforcement learning principle, which we call the self-learning robot. We believe

that it has the potential to outperform classical methods as it encapsulates

manual tuning complexity with comprehendible reward functions.

While initial training may require significant computational resources, the

resulting software can run on affordable hardware, specialized for AI applications

like Google Coral’s edge TPU devices [1] or Nvidia’s embedded GPU platforms [2].

This makes it particularly valuable for businesses deploying multiple robots, as

the learned behaviour can be easily replicated across an entire fleet.

Although some AI disciplines like computer vision are already widespread,

reinforcement learning for robot control is only now making its first steps from

research to industry, with pioneering applications in legged robotics by companies

like Boston Dynamics [3].

In this article
We start off with the navigation fundamentals, followed by a comparison between

commonly used deterministic optimization approaches and a learning-based

approach to navigation. We then explain our novel approach with more details on

the implementation in the subsequent section. After that, we demonstrate how

our robot can swiftly navigate around walls and through cluttered environments.

The article concludes with a discussion on future potential and applications of

self-learning robots.

 Page 3 of 14

Navigation fundamentals

Global planning
Imagine standing in an office space, wanting to navigate to the coffee machine.

Your brain automatically creates a general plan: "turn left at the conference room,

walk past the desks, the coffee machine is at the end of the corridor." This mental

mapping is what is known as a global path.

Figure 1: Mobile robot with lidar (orange) driving along global path (purple) toward the coffee
machine in an office environment.

Local planning
While walking, you instinctively adjust to the dynamic office environment -

stepping aside for colleagues or pausing as someone exits a meeting room.

Generating these quick, reactive movements is called local planning.

Figure 2: Mobile robot with lidar (orange) in a scenario necessitating local planning to prevent
future collision (red) along global path (purple).

This article focusses on local planning in complex, dynamic environments.

 Page 4 of 14

Comparing local planning methods

Common approaches
Common approaches use deterministic

optimization techniques to search for
the best action at each point in time,
based on a hand-tuned objective

function.

Learning-based approach
Each timestep, the robot executes the

action it has learned to be optimal for
the current observation without
evaluating numerous possible solutions.

Figure 3: Selecting best action (green) based
on forward simulated actions (purple).

Figure 4: Direct action output based on learned
behaviour.

Due to the complexity of the environment, the impact of the tuning decisions of

the common methods becomes difficult to comprehend, resulting in a tedious

trial-and-error process. These methods rarely include sufficient testing, making

it challenging to understand the full implications of parameter adjustments. This

ultimately leads to limited performance in real-world scenarios.

In contrast, the learning-based approach centres around testing, allowing desired

behaviours to emerge naturally from real-world scenarios through comprehensive

validation.

Moreover, common approaches often use real-time optimization to find the best

action at each timestep, which can make them computationally expensive. The

self-learning approach, when paired with modern AI hardware, can execute very

efficiently, as it directly outputs learned optimal actions without the need for

runtime optimizations.

 Page 5 of 14

Self-learning robot: General concept

In this section the general concept of the self-learning robot is explained. In the

next section we explain our actual implementation of these concepts.

For a robot to learn how to drive to a goal on its own, the following needs to be

defined:

• A robot

• The environments

• A reinforcement learning setup

Robot
A robot is defined by many aspects, but for the navigation tasks we focus on its

physical dimensions, its constrained movement in space and its sensing abilities.

Environment
The environment usually consists of a map with a floor, walls and obstacles. It

can be made as complex as you like. For instance, you could add moving

obstacles, different textures and so on.

Reinforcement learning
The robot learns from experience using the reinforcement learning process. In

short, it performs the following steps which are also visualized in Figure 5:

1. The robot receives data from its sensors which are used to generate

observations.

2. These observations are fed into a neural network, which is defined by an

architecture and its parameters. For each set of observations that the

network receives, it returns an action.

3. The robot performs the action and receives a reward. The rewards are

positive for good behaviour (such as driving toward the goal) and negative

for bad behaviour (such as driving into a wall). Defining the reward

correctly is a crucial factor in learning the desired behaviour.

These steps are repeated iteratively and after a specified number of steps, the

reinforcement learning algorithm uses the observations, actions and rewards to

update the parameters of the network in such a way that the network improves.

This is repeated until the network no longer improves.

 Page 6 of 14

Figure 5: Diagram of the reinforcement learning training procedure (grey and black arrows) and

inference process (black arrows only).

 Page 7 of 14

Self-learning robot: Practical implementation

In this section we explain how the general concepts from the previous section are

implemented to get our robot Cindy to learn how to drive to a goal on its own.

Robot: Cindy
Cindy is a small differential drive robot with a lidar developed by Nobleo

Technology mainly for educational, continuous testing and development

purposes.

Figure 6: Nobleo's differential drive mobile robot named Cindy.

As a first step we are simulating it as an infinitely small differential drive robot

with a 2D lidar sensor that returns 64 range measurements over 360 degrees.

Environment
In our demonstration we use two different sets of maps consisting of solid

obstacles depicted in Figure 7:

• Wall maps: these consist of solid walls of varying lengths that the robot

needs to drive around to reach its goal.

• BARN maps [4]: these consist of highly cluttered obstacle configurations.

 Page 8 of 14

Figure 7: Examples of a wall map (left) and a BARN map (right).

Reinforcement learning
We train the robot to navigate through each of these map sets separately. This is

done in simulation, which allows us to quickly train in many different scenarios.

The implementation of reinforcement learning setup discussed in the previous

section is depicted in Figure 5 and can be summarized as follows:

• The observations consist of the lidar measurements, and the goal position

with respect to the robot.

• The action is a command velocity that consists of a forward velocity and

an angular velocity component that provide simple instructions on how fast

to go forward and how fast to turn.

• The reinforcement learning algorithm used is Stable-Baselines3's

implementation of the Proximal Policy Optimization (PPO) [5].

• The reward is designed such that it encourages the robot to drive to the

goal with an efficient route (good behaviour), without colliding with

obstacles (bad behaviour):

o Small reward/penalty proportional to its progress towards or away

from the goal.

o Large reward for reaching the goal.

o Even larger penalty for colliding with walls or obstacles.

For more technical details on the implementation please see Appendix A.

 Page 9 of 14

Self-learning robot: Performance showcase

To showcase the performance of our self-learning robot, we split the datasets into

train and validation sets as seen in Table 1. The validation maps are excluded

from the training process.

Table 1: Training and validation set.

 Nr. of training maps Nr. of validation maps

Wall maps 179 37

BARN maps 240 60

It takes about 3 to 4 hours for a training session before the network stops

improving when training is performed on a laptop with a 13th generation Intel i7

processor, an RTX A1000 GPU and 32gb of RAM.

In Figure 8 and Figure 9 below, you see examples of paths driven by the robot in

the maps belonging to the respective datasets.

Figure 8: Validation results in maps belonging to the wall dataset.

 Page 10 of 14

Figure 9: Validation results in maps belonging to the BARN dataset.

The results in Figure 8 and Figure 9 show that in both cases the robot takes a

fast and logical route to its goal and carefully drives around obstacles.

Although it may seem as if the robot is cutting corners and driving through

obstacles, this is not the case. A closer inspection of the maps reveals that the

robot is not actually navigating through obstacles. Due to its small size, the robot

can pass by objects at a very close distance.

Figure 10: Zooming in on the upper left maps of the examples in Figure 8 and Figure 9 shows
that the robots passes the obstacles at a close distance without colliding.

 Page 11 of 14

In Table 2 the success rates and average inference times are shown. The robot

successfully reaches its goal in all the wall maps and successfully does so in 91.7

% (55 maps) of the BARN maps.

Table 2: Performance of our self-learning robot. The success rate is the percentage of maps in

which the robot reaches the goal. The inference time is the time that it takes for the model to
predict the next action based on its observation, on a regular laptop CPU.

 Nr validation

maps

Success

rate

Average inference

time

Wall maps 37 100 % 0.2 ms

BARN maps 60 91.7 % 0.2 ms

In the BARN map examples shown in Figure 9, the robot collides once. This can

have several causes, such as the reward putting too much emphasis on driving

to the goal, the training data not being representative enough, the robot being

entrapped and so on.

 Page 12 of 14

Closing words

Reinforcement learning for robotics is steadily gaining traction in the industry,

thanks to its ability to simplify complex environmental modelling into

understandable reward functions. One of the key advantages of reinforcement

learning-based methods is the ability to explicitly define desired behaviour, unlike

classical methods where the expected behaviour is typically implicit.

In our example, the robot navigates efficiently even though we never specified

how it should interpret its lidar data or determine its velocity in different

situations. It learned all of this on its own.

As mentioned earlier, reinforcement learning-based methods can run on relatively

affordable AI hardware, such as Nvidia Jetson boards [2] and external TPU’s [1].

This reduces the cost per robot and makes large-scale deployment more feasible.

Future work and opportunities
Looking ahead, our next steps involve scaling up the simulated robot size and

accurately modelling lidar noise and time delays for a smoother transition to the

physical world. After that, we will deploy the network on a physical robot and

fine-tune the training parameters.

Given the progress AI has made in other areas, such as generative AI (e.g.,

ChatGPT) and image recognition, we believe that self-learning robots will also

become more prominent in the future. They will be especially beneficial for two

specific use cases: environments with large robot fleets and robots operating in

complex, dynamic environments.

Curious?
We think that reinforcement learning for robot navigation is an innovative and

promising technique that should be closely monitored in the coming years. If

you're interested in its potential applications or would like to learn more about

our implementation, feel free to contact us at:

bram.odrosslij@nobleo.nl

 Page 13 of 14

References

[1] "Coral products," Coral, [Online]. Available: https://coral.ai/products/.

[Accessed 19 12 2024].

[2] "Jetson Modules," [Online]. Available:

https://developer.nvidia.com/embedded/jetson-modules. [Accessed 18 12

2024].

[3] "Boston Dynamics," [Online]. Available:

https://bostondynamics.com/blog/starting-on-the-right-foot-with-

reinforcement-learning/. [Accessed 18 12 2024].

[4] D. Perille, A. Truong, X. Xiao and P. Stone, "Benchmarking Metric Ground

Navigation," in 2020 IEEE International Symposium on Safety, Security and

Rescue Robotics (SSRR), IEEE, 2020.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, "Proximal

Policy Optimization Algorithms," arXiv, 2017.

[6] "Github - Stable-Baselines3," German Aerospace Center (DLR) - Institute of

Robotics and Mechatronics (RM), [Online]. Available:

https://github.com/DLR-RM/stable-baselines3.

[7] "Github - Hydra," Facebook Research, [Online]. Available:

https://github.com/facebookresearch/hydra.

[8] Webots, "Open-source Mobile Robot Simulation Software," Cyberbotics Ltd.,

[Online]. Available: http://www.cyberbotics.com.

[9] "Github - Shapely," [Online]. Available:

https://github.com/shapely/shapely.

 Page 14 of 14

APPENDIX A. TECHNICAL DETAILS

This appendix describes the technical specifications of the implementation of the self-learning robot.

Reinforcement learning algorithm

Policy gradient method PPO
PPO parameters
 learning_rate 0.0003
 n_steps 2048
 batch_size 64
 n_epochs 10
 gamma 0.99
 gae_lambda 0.95
 clip_range_vf null
 normalize_advantage true
 ent_coef 0.0
 vf_coef 0.5
 max_grad_norm 0.5
 use_sde false
 sde_sample_freq -1
 nr of environments 6
 policy MlpPolicy
 activation_fn ReLU
 net_arch
 pi [256, 256, 256, 256, 256]
 vf [256, 256, 256, 256, 256]

Software packages

Reinforcement learning Stable baseline3 [6]
Configuration management Hydra [7]
Simulation Webots [8]
Geometry library Shapely [9]

Learning parameters

total_time_steps 4.000.000
n_eval_episodes 25
eval_freq 10.000 / 6
deterministic False
reset_num_timesteps False
nr of environments 6

Robot simulation

sample time 0.05 s
kinematics
 max forward velocity 0.2
 min forward velocity -0.2
 max forward acceleration 0.3
 min forward acceleration -0.3
 max angular velocity 0.6
 min angular velocity -0.6
 max angular acceleration 0.8
 min angular acceleration -0.8
dimensions
 footprint [[-0.001, 0.0]

 [0.0, √3/100]
 [0.001, 0.0]]
lidar
 position [0.0, 0.0]
 number of measurements 64
 angular range 360 degrees
 linear range 0.05-3.0 m
 frequency range 20-40 Hz

Rewards

at goal 250
collision -1500
linear* 10.0 * relative progress
 towards goal

*The relative progress towards the goal is computed
as the projection of the progress onto a vector
pointing from the robot to the goal. It is therefore
positive when its distance to the goal decreases and
negative when its distance to the goal increases.

	The self-learning robot
	Introduction
	Common approaches
	Learning-based approach es
	In this article

	Navigation fundamentals
	Global planning
	Local planning

	Comparing local planning methods
	Self-learning robot: General concept
	Robot
	Environment
	Reinforcement learning

	Self-learning robot: Practical implementation
	Robot: Cindy
	Environment
	Reinforcement learning

	Self-learning robot: Performance showcase
	Closing words
	Future work and opportunities
	Curious?

	References
	Appendix A. Technical details

